Matrix moving mean with overflow average

1 visualización (últimos 30 días)
Albert Zurita
Albert Zurita el 13 de Nov. de 2022
Comentada: Albert Zurita el 15 de Nov. de 2022
I am wondering if there is a (simply) way when using movmean for controlling row overflow and for specifying a rectangular window instead of a square window. The idea would be to keep averaging the patch corresponding to each number in red until the end of row is found, and simply jump to the next row. Thanks!

Respuesta aceptada

Matt J
Matt J el 13 de Nov. de 2022
Editada: Matt J el 13 de Nov. de 2022
Here's one way. I assumed here you want the same wrap-around to occur in the lower-right corner of the matrix as well.
A=reshape(1:24,[],4)'
A = 4×6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
B=[A,circshift(A(:,1:2),-1) ]
B = 4×8
1 2 3 4 5 6 7 8 7 8 9 10 11 12 13 14 13 14 15 16 17 18 19 20 19 20 21 22 23 24 1 2
slidingMeans=conv2(B,ones(3)/9,'valid')
slidingMeans = 2×6
8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 16.0000 17.0000 15.3333 13.6667
  5 comentarios
Matt J
Matt J el 15 de Nov. de 2022
win = [3 5]; % rows, cols
A=reshape(1:24,[],4)'
A = 4×6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
B=[A,circshift(A(:,1:win(2)-1),-1)];
B(end,end-win(2)+2:end)=nan
B = 4×10
1 2 3 4 5 6 7 8 9 10 7 8 9 10 11 12 13 14 15 16 13 14 15 16 17 18 19 20 21 22 19 20 21 22 23 24 NaN NaN NaN NaN
slidingMeans=conv2(B,ones(win)/prod(win),'valid' )
slidingMeans = 2×6
9.0000 10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 16.0000 NaN NaN NaN NaN
Albert Zurita
Albert Zurita el 15 de Nov. de 2022
This is excellent, and good methodology I learnt, thanks!

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by