Why " The boundary condition function BCFUN should return a column vector of length 5" error message is came?

13 visualizaciones (últimos 30 días)
% function Y6
solinit = bvpinit(linspace(0,1),[0;3;1;1],2);
sol = bvp4c(@ode, @bc, solinit);
Error using bvparguments
Error in calling BVP4C(ODEFUN,BCFUN,SOLINIT):
The boundary condition function BCFUN should return a column vector of length 5.

Error in bvp4c (line 122)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
y = sol.y;
time = sol.parameters*sol.x;
ut = -y(4,:);
figure(1);
plot(time,y([1 2],:)','-'); hold on;
plot(time, ut, 'k:');
axis([0 time(1,end) -1.5 3]);
text(1.3,2.5,'x_1(t)');
text(1.3,.9,'x_2(t)');
text(1.3,-.5,'u(t)');
xlabel('time');
ylabel('states');
title('Numerical solution');
hold off;
% -------------------------------------------------------------------------
% ODE's of augmented states
function dydt = ode(t,y,T)
dydt = T*[2*y(2);4*y(4);0;-2*y(3)];
end
% -------------------------------------------------------------------------
% boundary conditions: x1(0)=11;p2(0)=2; x2(tf)=3; 3*p1(tf)+p2(2)^2=0
function res = bc(ya,yb,T)
res = [ ya(1) - 11; ya(4); yb(2) - 3; 3*yb(3)+yb(4)^2];
end

Respuesta aceptada

Jan
Jan el 14 de Nov. de 2022
You provide an extra parameter:
solinit = bvpinit(linspace(0,1),[0;3;1;1],2);
% ^ here
But there is no condition for this parameter in bc().
  4 comentarios
Tu
Tu el 16 de Nov. de 2022
Editada: Tu el 16 de Nov. de 2022
yes, i want to find U_optimal through numerical method of this problem. but i don''t know how to find it! can you help me please. U is a function of variable t u=u(t)
Jan
Jan el 16 de Nov. de 2022
This not trivial. If you do not know, which function u is, there is an infinite number of possible solutions. This is an optimization problem and not a simple BVP.

Iniciar sesión para comentar.

Más respuestas (1)

Torsten
Torsten el 16 de Nov. de 2022
Editada: Torsten el 16 de Nov. de 2022
Choose a grid
0=t0 < t1 < ... < tn = tf
With each grid point, associate a value ui of your control function u (the ui are your solution variables for the optimization problem).
Call fmincon with initial values for the ui.
Within the objective function for fmincon, solve the boundary value problem from above with the given vector u (e.g. using bvp4c or your own ODE solver for this simple boundary value problem) and return the value for J to the optimizer. The integral can be approximated by the trapezoidal rule, e.g.
Maybe the YouTube video is of help:
  3 comentarios
Torsten
Torsten el 16 de Nov. de 2022
I described the steps you have to follow and even gave a link to a video where everything is described in detail. This is all I can do for you - the task is not a "one-liner".

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by