PCA scaling and centering documentation wrong?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
The pca() documentation says that the raw data is automatically centered at the start of the process. If true, then pca(X) should be equal to pca(Y), where Y = centered data. But they're not (specific data below). Additionally, when I use either eig() or svd() to compute the principal components, I can only get them to match the pca output when I first manually center the data before using pca(). Ultimately my question is simply how do I correctly calculate the principal components of raw data? I.e. do I need to manually center and scale it first? Only manually center? Only manually scale?
Sample data: X =
1.0000 -3.0000 -1.0000; 2.0000 -2.0000 -0.5000; 3.0000 -0.5000 0.2500; 4.0000 2.0000 1.0000; 5.0000 5.0000 2.5000;
Centering X -> Y= -2.0000 -3.3000 -1.4500; -1.0000 -2.3000 -0.9500; 0 -0.8000 -0.2000; 1.0000 1.7000 0.5500; 2.0000 4.7000 2.0500;
pca(X) = -0.7360 -0.6037 -0.3062; -0.6688 0.7186 0.1907; -0.1049 -0.3452 0.9327;
pca(Y) =
0.4058 0.8414 0.3569
0.9124 -0.3960 -0.1036
0.0542 0.3676 -0.9284
svd(Y) = 0.4058 0.9124 0.0542; 0.8414 -0.3960 0.3676; 0.3569 -0.1036 -0.9284;
eig(cov(Y)) = 0.0542 0.9124 0.4058; 0.3676 -0.3960 0.8414; -0.9284 -0.1036 0.3569; ^this is the same output just in a different order.
0 comentarios
Respuestas (2)
Sagar
el 9 de Ag. de 2015
You got it little wrong. When you do PCA(Y), by default, PCA again centers the data. So if you want to get the same values as PCA(X), use 'centered', 'off' name-value pair option: PCA_of_Y = PCA (Y, 'centered', 'off'); Now it will definitely be equal to PCA(X).
0 comentarios
the cyclist
el 26 de Jun. de 2019
Editada: the cyclist
el 8 de Ag. de 2022
Answering a gazillion years after-the-fact, because I just turned this up in my own search.
X = [1.0000 -3.0000 -1.0000;
2.0000 -2.0000 -0.5000;
3.0000 -0.5000 0.2500;
4.0000 2.0000 1.0000;
5.0000 5.0000 2.5000];
Y = X - mean(X);
pca(X)
pca(Y)
both give the same PCA results (as of when I answered this).
So, either something got fixed, or you made a mistake.
0 comentarios
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!