2x2 Projection matrix of rank 1

6 visualizaciones (últimos 30 días)
john
john el 23 de Nov. de 2022
Editada: john el 27 de Nov. de 2022
  2 comentarios
Rik
Rik el 24 de Nov. de 2022
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
john
john el 27 de Nov. de 2022
Editada: john el 27 de Nov. de 2022
oops

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 23 de Nov. de 2022
Editada: Matt J el 23 de Nov. de 2022
a=[1; 2]; n=[3; 4]; x=[5; 6];
r1p(a,n,a)
ans = 2×1
0.1789 0.3578
r1p(a,n,n)
ans = 2×1
1.0e-15 * -0.1986 -0.3972
r1p(a,n,x)
ans = 2×1
-0.1789 -0.3578
function p = r1p(a,n,x)
% computes the action of P, the 2x2 projection matrix of rank 1 having
% a - the sole basis vector for the column space of P
% n - the sole basis vector for the null space of P
a = normalize(a(:),'n');
b = normalize(null(n(:)'),'n');
p = dot(x,b)*a;
end
  4 comentarios
john
john el 23 de Nov. de 2022
Thank you so much for continuing to help me out. However, this now works for a=[1; 0.01]; n=[0.01; 1]; x=[1; 0]; (just have to negate it), but does not return the correct answer for a=[1; 2]; n=[3; 4]; x=[5; 6];
Matt J
Matt J el 23 de Nov. de 2022
Again, you do not provide what you think is the correct answer, or an explanation of why that answer is correct..

Iniciar sesión para comentar.

Más respuestas (1)

Moiez Qamar
Moiez Qamar el 24 de Nov. de 2022
%should work for:
a=[1; 0.01]
a = 2×1
1.0000 0.0100
n=[0.01; 1]
n = 2×1
0.0100 1.0000
x=[1; 0]
x = 2×1
1 0
p=r1p(a,n,x)
P = 2×2
1.0001 -0.0100 0.0100 -0.0001
p = 2×1
1.0001 0.0100
p = 2×1
1.0001 0.0100
%and for:
a=[1; 0];
n=[0; 1];
x=[1; 0];
p = r1p(a,n,x);
P = 2×2
1 0 0 0
p = 2×1
1 0
function p = r1p(a,n,x)
% computes the action of P, the 2x2 projection matrix of rank 1 having
% a - the sole basis vector for the column space of P
% n - the sole basis vector for the null space of P
xi=[0 -1; 1 0]*n;
chi=xi/(xi'*a);
P=a*chi'
p=P*x
end
  1 comentario
Matt J
Matt J el 24 de Nov. de 2022
P=a*chi'
outer products are not efficient. That's why the exercise asks for you to compute p without computing P.

Iniciar sesión para comentar.

Categorías

Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by