I think potentially the reason the StackOverflow answer isn't working is because "overlapping" and "intersecting" are not the exact same thing
How to detect intersection of 3D rectangles that are rotated?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Michael Ferguson
el 6 de Dic. de 2022
Respondida: Jeffrey Clark
el 6 de Dic. de 2022
I'm working on a program that detects whether 2, 3D rectangles formed from 8 vertices each have volume that intersects between each other.
You can see in my plot the 8 vertices for each cube colored in red and blue, and by inspection they do not overlap.
However, for whatever reason they are incorrectly being treated as intersecting.
My code so far:
A = [1.06890761348719 0.228825482643729 6.59315554806020];
B = [1.44834644922958 2.01394485398281 6.59315554806020];
C = [1.88232205180130 1.92170049205148 7.14104345088730];
D = [1.50288321605895 0.136581120712592 7.14104345088730];
E = [1.38125706283994 0.162433557649978 7.24173471345524];
F = [1.76069589858218 1.94755292898839 7.24173471345524];
G = [1.32672029601073 2.03979729091965 6.69384681062850];
H = [0.947281460268735 0.254677919582385 6.69384681062850];
P1 = [A;B;C;D;E;F;G;H];
A = [2.13936288118597 1.24719872848015 6.52288724067451];
B = [1.62823228878787 2.82673229470654 5.76496624830234];
C = [1.90147565323319 3.17763404084656 6.31198638352805];
D = [2.41260624563123 1.59810047462036 7.06990737590013];
E = [2.27208449737978 1.58908440932306 7.14588335127981];
F = [1.76095390498189 3.16861797554878 6.38796235890797];
G = [1.48771054053678 2.81771622940902 5.84094222368265];
H = [1.99884113293429 1.23818266318445 6.59886321605394];
P2 = [A;B;C;D;E;F;G;H];
% check if there is intersection
c1 = max(P1(:,1)) > min(P2(:,1));
c2 = min(P1(:,1)) < max(P2(:,1));
c3 = max(P1(:,2)) > min(P2(:,2));
c4 = min(P1(:,2)) < max(P2(:,2));
c5 = max(P1(:,3)) > min(P2(:,3));
c6 = min(P1(:,3)) < max(P2(:,3));
[X,Y,Z] = deal(nan);
if c1 && c2 && c3 && c4 && c5 && c6
X(1) = max(min(P1(:,1)),min(P2(:,1)));
X(2) = min(max(P1(:,1)),max(P2(:,1)));
Y(1) = max(min(P1(:,2)),min(P2(:,2)));
Y(2) = min(max(P1(:,2)),max(P2(:,2)));
Z(1) = max(min(P1(:,3)),min(P2(:,3)));
Z(2) = min(max(P1(:,3)),max(P2(:,3)));
disp('there is an intersection');
else
disp('there is no intersection');
end
plot3(P1(:,1),P1(:,2),P1(:,3),'.b')
hold on
plot3(P2(:,1),P2(:,2),P2(:,3),'.r')
hold off
h = legend('cube1','cube2','intersection cube');
set(h,'orientation','horizontal','location','north')
axis equal vis3d
xlabel('x');
ylabel('y');
zlabel('z');
Respuesta aceptada
Jeffrey Clark
el 6 de Dic. de 2022
@Michael Ferguson, You can try the attached delaunayTriangulationIntersect.m function that I use to look for intersection of solids. This is your code showing your case and my slightly modified intersection case (also see attached figures):
A1 = [1.06890761348719 0.228825482643729 6.59315554806020];
B1 = [1.44834644922958 2.01394485398281 6.59315554806020];
C1 = [1.88232205180130 1.92170049205148 7.14104345088730];
D1 = [1.50288321605895 0.136581120712592 7.14104345088730];
E1 = [1.38125706283994 0.162433557649978 7.24173471345524];
F1 = [1.76069589858218 1.94755292898839 7.24173471345524];
G1 = [1.32672029601073 2.03979729091965 6.69384681062850];
H1 = [0.947281460268735 0.254677919582385 6.69384681062850];
P1 = [A1;B1;C1;D1;E1;F1;G1;H1];
DT1 = delaunayTriangulation(P1);
A2 = [2.13936288118597 1.24719872848015 6.52288724067451];
B2 = [1.62823228878787 2.82673229470654 5.76496624830234];
C2 = [1.90147565323319 3.17763404084656 6.31198638352805];
D2 = [2.41260624563123 1.59810047462036 7.06990737590013];
E2 = [2.27208449737978 1.58908440932306 7.14588335127981];
F2 = [1.76095390498189 3.16861797554878 6.38796235890797];
G2 = [1.48771054053678 2.81771622940902 5.84094222368265];
H2 = [1.99884113293429 1.23818266318445 6.59886321605394];
P2 = [A2;B2;C2;D2;E2;F2;G2;H2];
DT2 = delaunayTriangulation(P2);
figure
tetramesh(DT1,'FaceAlpha',0.05,'FaceColor','r');
hold on
tetramesh(DT2,'FaceAlpha',0.05,'FaceColor','b');
DTint = delaunayTriangulationIntersect(DT1,DT2);
if isempty(DTint.Points)
disp("No intersect of DT1 and DT2")
else
tetramesh(DTint,'FaceColor','g');
end
% Make intersecting case
D2F2m = mean([D2;F2]);
C1a = D2F2m+[0,0,0.1];
F1a = D2F2m-[0,0,0.1];
P1a = [A1;B1;C1a;D1;E1;F1a;G1;H1];
DT1a = delaunayTriangulation(P1a);
figure
tetramesh(DT1a,'FaceAlpha',0.05,'FaceColor','r');
hold on
tetramesh(DT2,'FaceAlpha',0.05,'FaceColor','b');
DTint = delaunayTriangulationIntersect(DT1a,DT2);
if isempty(DTint.Points)
disp("No intersect of DT1a and DT2")
else
tetramesh(DTint,'FaceColor','g');
end
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Line Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!