Optimization mvncdf and integral problem

1 visualización (últimos 30 días)
Paul AGAMENNONE
Paul AGAMENNONE el 13 de Dic. de 2022
Comentada: Torsten el 14 de Dic. de 2022
Hello,
I'm running an optimzation model to minimize the system reliability of my problem. The model works correctly as I'm looking for the right values of d with mvncdf and using the simple method of the integral with the pdf. However, I can't find the same reliability at the end of my problem. With mvncdf, I get the good value, but with the integrals method I find 1 (or 0 depending if I take the probability of failure or reliability).
I don't know where the problem comes from, so I ask for help.
Here is my code: change the value of the flag to get both methods
muL = 2000;
sigL = 200;
R1 = 1-9.92*10^-5;
R2 = 1-1.2696*10^-4;
R3 = 1-3.87*10^-6;
Sr1_min = sqrt(((((1.5-1)*muL)/norminv(R1))^2)-(sigL)^2);
Sr1_max = sqrt(((((2.5-1)*muL)/norminv(R1))^2)-(sigL)^2);
Sr2_min = sqrt(((((1.5-1)*muL)/norminv(R2))^2)-(sigL)^2);
Sr2_max = sqrt(((((2.5-1)*muL)/norminv(R2))^2)-(sigL)^2);
Sr3_min = sqrt(((((1.5-1)*muL)/norminv(R3))^2)-(sigL)^2);
Sr3_max = sqrt(((((2.5-1)*muL)/norminv(R3))^2)-(sigL)^2);
lb = [Sr1_min,Sr2_min,Sr3_min];
ub = [Sr1_max,Sr2_max,Sr3_max];
A = [];
B = [];
Aeq = [];
Beq = [];
d0 = (lb+ub)/5;
fun = @(d) parameterfun(d,muL,sigL,R1,R2,R3);
const = @(d) nonlcon(d,muL,sigL,R1,R2,R3);
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
format long
flag = 1;
fun = @(d) parameterfun(d,muL,sigL,R1,R2,R3,flag);
[d,fval] = fmincon(fun,d0,A,B,Aeq,Beq,lb,ub,const,options)
function Rs = parameterfun(d,muL,sigL,R1,R2,R3,flag)
%
mu_Sr1 = muL+norminv(R1)*sqrt((sigL)^2+(d(1))^2);
mu_Sr2 = muL+norminv(R2)*sqrt((sigL)^2+(d(2))^2);
mu_Sr3 = muL+norminv(R3)*sqrt((sigL)^2+(d(3))^2);
%
Y1_mean = muL-mu_Sr1;
Y2_mean = muL-mu_Sr2;
Y3_mean = muL-mu_Sr3;
%
Y1_std = sqrt((d(1))^2+(sigL)^2);
Y2_std = sqrt((d(2))^2+(sigL)^2);
Y3_std = sqrt((d(3))^2+(sigL)^2);
%
Y_mean = [Y1_mean Y2_mean Y3_mean];
Y_std = [(Y1_std^2) (sigL)^2 (sigL)^2; (sigL)^2 (Y2_std)^2 (sigL)^2; (sigL)^2 (sigL)^2 (Y3_std)^2];
inv_Y_std = inv(Y_std);
det_Y_std = det(Y_std);
%fy = @(X,Y,Z) arrayfun(@(x,y,z) 1/((2*pi)^(3/2).*(det_Y_std)^0.5).*exp(-(1/2).*([x,y,z]-Y_mean)*inv_Y_std*([x,y,z]-Y_mean).'),X,Y,Z);
%Rs = 1 - integral3(fy,-Inf,0,-Inf,0,-Inf,0);
if flag == 1
Rs = 1-integral3(@(x,y,z)fy(x,y,z,det_Y_std,inv_Y_std,Y_mean),-Inf,0,-Inf,0,-Inf,0)
else
Rs = 1 - mvncdf(zeros(1,3),Y_mean,Y_std)
disp(d);
end
%pf = 1-Rs;
%
end
function [c,ceq] = nonlcon(d,muL,sigL,R1,R2,R3)
muL = 2000;
sigL = 200;
c(1) = 1.5 - ((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))/muL);
c(2) = 1.5 - ((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))/muL);
c(3) = 1.5 - ((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))/muL);
c(4) = ((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))/muL) - 2.5;
c(5) = ((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))/muL) - 2.5;
c(6) = ((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))/muL) - 2.5;
c(7) = 0.08 - (d(1)/((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))));
c(8) = 0.08 - (d(2)/((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))));
c(9) = 0.08 - (d(3)/((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))));
c(10) = (d(1)/((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2))))) - 0.2;
c(11) = (d(2)/((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2))))) - 0.2;
c(12) = (d(3)/((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2))))) - 0.2;
ceq = [];
end
function values = fy(x,y,z,det_Y_std,inv_Y_std,Y_mean)
values = zeros(size(x));
for i=1:size(x,1)
for j=1:size(x,2)
for k=1:size(x,3)
values(i,j,k) = 1/sqrt((2*pi)^(3/2).*det_Y_std).*exp(-(1/2).*([x(i),y(j),z(k)]-Y_mean)*inv_Y_std*([x(i),y(j),z(k)]-Y_mean).');
end
end
end
end

Respuesta aceptada

Torsten
Torsten el 13 de Dic. de 2022
Editada: Torsten el 13 de Dic. de 2022
There were some errors in the function supplied to compute the MND.
Use
function values = fy(x,y,z,det_Y_std,inv_Y_std,Y_mean)
values = zeros(size(x));
for i=1:size(x,1)
for j=1:size(x,2)
for k=1:size(x,3)
values(i,j,k) = 1/((2*pi)^(3/2).*sqrt(abs(det_Y_std))).*exp(-(1/2).*([x(i,j,k),y(i,j,k),z(i,j,k)]-Y_mean)*inv_Y_std*([x(i,j,k),y(i,j,k),z(i,j,k)]-Y_mean).');
end
end
end
end
instead.
You can also try the call
Rs = 1-integral3(@(x,y,z)arrayfun(@(X,Y,Z)fy(X,Y,Z,det_Y_std,inv_Y_std,Y_mean),x,y,z),-Inf,0,-Inf,0,-Inf,0)
together with the function
function value = fy(x,y,z,det_Y_std,inv_Y_std,Y_mean)
value = 1/((2*pi)^(3/2).*sqrt(abs(det_Y_std))).*exp(-(1/2).*([x,y,z]-Y_mean)*inv_Y_std*([x,y,z]-Y_mean).');
end
  6 comentarios
Paul AGAMENNONE
Paul AGAMENNONE el 14 de Dic. de 2022
I found the solution, it comes from the definition of y in my example with mvncdf
y = zeros(size(d));
Thanks for the help
Torsten
Torsten el 14 de Dic. de 2022
But there is no such setting in the code above and nevertheless you get the same solution when you try to minimize the objective as you get when you try to maximize it.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Genomics and Next Generation Sequencing en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by