- Majority Voting
Stacking two semi suprvised models
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have two trained semisuprvised algorithms ( graph based and SVM). How to combine the models together ?
0 comentarios
Respuestas (1)
Rohit
el 21 de Mzo. de 2023
Editada: Rohit
el 21 de Mzo. de 2023
You can combine two trained semi-supervised algorithms using various methods. Here are some examples of how to implement these methods:
graph_output = graph_based_algorithm(test_data);
svm_output = svm_algorithm(test_data);
% Combine the outputs using majority voting
ensemble_output = mode([graph_output, svm_output], 2);
2. Model stacking
graph_features = graph_based_algorithm(data);
svm_output = svm_algorithm(graph_features);
Note that these are just examples, and the exact implementation will depend on the specific characteristics of your algorithms and data.
Similarly, you can experiment with different ensemble methods and see what works best for your use case.
0 comentarios
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!