Minimizing linear equation Ax=b using gradient descent
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Tevin
el 20 de Dic. de 2022
Comentada: Tevin
el 20 de Dic. de 2022
I want to find the error in the solution to Ax=b, using gradient descent.
E=||Ax-b||^2
x = [x1;x2], where x1 and x2 range between -5 and 5, with step size 0.2 for each direction.
How do I use Gradient Descent to search for a local minimum with know step size of 0.2, learning rate= 0.1. The search should stop when the difference between previous and current value is 0.002. I am to find solution for x using Gradient Descent, as well error E.
4 comentarios
Hiro Yoshino
el 20 de Dic. de 2022
You need to derive the derivative of the Error function. Gradient Descent requires it to move the point of interest to the next.
Respuesta aceptada
Más respuestas (0)
Ver también
Categorías
Más información sobre Mathematics and Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!