Minimizing linear equation Ax=b using gradient descent

6 visualizaciones (últimos 30 días)
Tevin
Tevin el 20 de Dic. de 2022
Comentada: Tevin el 20 de Dic. de 2022
I want to find the error in the solution to Ax=b, using gradient descent.
E=||Ax-b||^2
x = [x1;x2], where x1 and x2 range between -5 and 5, with step size 0.2 for each direction.
How do I use Gradient Descent to search for a local minimum with know step size of 0.2, learning rate= 0.1. The search should stop when the difference between previous and current value is 0.002. I am to find solution for x using Gradient Descent, as well error E.
  4 comentarios
Hiro Yoshino
Hiro Yoshino el 20 de Dic. de 2022
You need to derive the derivative of the Error function. Gradient Descent requires it to move the point of interest to the next.
Tevin
Tevin el 20 de Dic. de 2022
Thank you. The function that I wrote already does that. My problem is that I struggle to calculate error for all the grid values (X,Y). The array sizes are incompatible but I am not sure how to fix that.

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 20 de Dic. de 2022
Editada: Matt J el 20 de Dic. de 2022
[X1,X2]= meshgrid(-5:0.2:5);
x=[X1(:)';X2(:)'];
E=vecnorm( A*x-b, 2,1);
E=reshape(E,size(X1)); %if desired
  3 comentarios
Torsten
Torsten el 20 de Dic. de 2022
It's sqrt(sum((A*x-b).^2))
Tevin
Tevin el 20 de Dic. de 2022
Thank you both. This really helped

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Mathematics and Optimization en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by