Invalid validation data table. For networks with feature input, predictors must be numeric arrays, where each variable of the table corresponds to one feature.

3 visualizaciones (últimos 30 días)
Hello, I am new to matlab. I want to ask what to do if there is an invalid validation data table error. This is my code
filename = "Data1.txt";
tbl = readtable(filename,'TextType','String');
labelName = "output";
tbl = convertvars(tbl,labelName,'categorical');
head(tbl)
categoricalInputNames = ["class" "fractaldimension"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');
for i = 1:numel(categoricalInputNames)
name = categoricalInputNames(i);
oh = onehotencode(tbl(:,name));
tbl = addvars(tbl,oh,'After',name);
tbl(:,name) = [];
end
tbl = splitvars(tbl);
head(tbl)
classNames = categories(tbl{:,labelName});
numObservations = size(tbl,1);
numObservationsTrain = floor(0.7*numObservations);
numObservationsValidation = floor(0.15*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;
idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idx(numObservationsTrain+numObservationsValidation+1:end);
tblTrain = tbl(idxTrain,:);
tblValidation = tbl(idxValidation,:);
tblTest = tbl(idxTest,:);
numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);
layers = [
featureInputLayer(numFeatures,'Normalization', 'zscore')
fullyConnectedLayer(83)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
miniBatchSize = 16;
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'ValidationData',tblValidation, ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(tblTrain,labelName,layers,options);
Invalid validation data table. For networks with feature input, predictors must be numeric arrays, where each
variable of the table corresponds to one feature.

Respuestas (1)

Rohit
Rohit el 23 de Mzo. de 2023
Hi Adib,
As mentioned in this documentation: https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html , you need to specify the validation data as a datastore, table, or the cell array {predictors,responses}, where predictors contains the validation predictors and responses contains the validation responses.
So, you need to modify code as shown below to get rid of error and start the training.
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'ValidationData',{tblValidation,tblValidation(:,labelName)} ,... % passing validation date as cell array of predictors and responses
'Plots','training-progress', ...
'Verbose',false);

Categorías

Más información sobre Classification en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by