post hoc tests for aoctool
    4 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    bsriv
 el 24 de En. de 2023
  
    
    
    
    
    Respondida: the cyclist
      
      
 el 24 de En. de 2023
            Hi, I am running an ANCOVA using AOCtool and am not understanding the syntax for post hoc testing
[h,atab,ctab,stats]=aoctool(table_zero_some.var1,table_zero_some.var2,table_zero_some.group,0.05,'var1','var2','group')
I get 
atab =
  5×6 cell array
    {'Source'          }    {'d.f.'}    {'Sum Sq'}    {'Mean Sq'}    {'F'       }    {'Prob>F'  }
    {'group'           }    {[   1]}    {[0.0869]}    {[ 0.0869]}    {[  0.1908]}    {[  0.6674]}
    {'activation'      }    {[   1]}    {[4.1257]}    {[ 4.1257]}    {[  9.0583]}    {[  0.0075]}
    {'group*activation'}    {[   1]}    {[0.9107]}    {[ 0.9107]}    {[  1.9996]}    {[  0.1744]}
    {'Error'           }    {[  18]}    {[8.1983]}    {[ 0.4555]}    {0×0 double}    {0×0 double}
I would like to use multcompare as I would in a standard ANOVA; however the matlab documentation says 
multcompare uses stats.gnames(idx) as the control group
I'm not sure what this means or what the syntax is supposed to look like
This is the stats output:
stats = 
  struct with fields:
        source: 'aoctool'
        gnames: {2×1 cell}
             n: [2×1 double]
            df: 18
             s: 0.6749
         model: 5
        slopes: [2×1 double]
      slopecov: [2×2 double]
    intercepts: [2×1 double]
      intercov: [2×2 double]
           pmm: [2×1 double]
        pmmcov: [2×2 double]
Thanks!
0 comentarios
Respuesta aceptada
  the cyclist
      
      
 el 24 de En. de 2023
        After running aoctool and getting the stats output, you can simply run
[results,~,~,gnames] = multcompare(stats)
If you do that, then by default the first group listed in gnames will be the reference group. Alternatively, you can run
[results,~,~,gnames] = multcompare(stats,'ControlGroup',3)
if you want the 3rd group to be the reference group. (Different sources of the stats variable can have different methods of specifying the control group, but that is how you do it for aoctool, according to this documentation.)
0 comentarios
Más respuestas (0)
Ver también
Categorías
				Más información sobre Analysis of Variance and Covariance en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

