Extended Kalman Filter state transition parameters
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Eduardo
el 27 de En. de 2023
Respondida: Emmanouil Tzorakoleftherakis
el 27 de En. de 2023
As a follow up to this question, I am wondering how to correctly input a vector of additional parameters to an EKF block.
The state transition function is a wrapper of the state function used for a NLMPC.
Similar to the following example: Swing-Up Control of a Pendulum. My state function works using additional parameters like the "Ts" used in the example. In my case, however, the additional parameters are some signals U from my plant plus 37 predefined parameters in the base workspace.
This parameters are given as a vector "p".
For now I have tried using a mux:
The simulation fails during compilation with the following error:
The function used as a wrapper looks as follows:
function xk1 = stateFcnEKF_mixBufRd_wrapper(xk, u)
% Wrapper function for the State function used by the Extended Kalman Filter block.
%
%
% u = [signal1 signal2 signal3 signal4 p]
%
% Outputs:
% xk1: Updated state values based on xk and uk
uk = [u(1) u(2) u(3) u(4)];
p = u(5); % <----- vector of 37 parameters defined in base workspace
xk1 = stateFcnDT0_mixBufRd(xk, uk, p); % <----- function used in NLMPC
Any ideas how the configuration of blocks should look like?
I have tried using IC and signal description blocks but I am not sure of the correct input definition.
0 comentarios
Respuesta aceptada
Más respuestas (1)
Emmanouil Tzorakoleftherakis
el 27 de En. de 2023
Glad you figured it out. By the way, this example shows the general workflow of using NLMPC + EKF with additional parameters
0 comentarios
Ver también
Categorías
Más información sobre Model Predictive Control Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!