How to predict responses of new data from a crossvalidated SVR model
14 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
NCA
el 2 de Feb. de 2023
Respondida: Dr. JANAK TRIVEDI
el 2 de Feb. de 2023
Hi there
I have trained and cross validated my Support Vector Machine regressor model (CValidated_Mdl) with KFold cross validation technique.
I know I can predict responses by using YFit= kfoldPredict(CValidated_Mdl) where YFit are the new responses predicted by the model.
I also have a new set of data(unseen by model) which I will like to use to test the performance of my CValidated_Mdl.
This new and unseen data is called X_test.
I am not sure of how to use the cross validated model (CValidated_Mdl) to predict responses from the X_test data
I have tried YFit= kfoldPredict(CValidated_Mdl, X_test) without success
Can you advise please
Thank You
0 comentarios
Respuesta aceptada
Dr. JANAK TRIVEDI
el 2 de Feb. de 2023
You can use the predict function in MATLAB to predict responses using the cross-validated model (CValidated_Mdl) and the new data X_test. The code would look like this:
YFit = predict(CValidated_Mdl.Trained{1}, X_test);
Note that CValidated_Mdl.Trained{1} is the trained SVM model for the first fold in the cross-validation, you can use any fold that you think has the best performance.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!