Newton Raphson method for a system of non-linear equations?

146 visualizaciones (últimos 30 días)
If I have a non-linear system of two equations that are each in terms of two variables x and y:
eqn1(x,y) = 0
eqn2(x,y) = 0
How will I go about solving those two equations using Newton-Raphson in MATLAB? I know how to solve this system using the MATLAB's Solve function but not Newton-Raphson.

Respuesta aceptada

Alan Stevens
Alan Stevens el 12 de Feb. de 2023
Here's a simple example for you to follow:
% Functions
f = @(x,y) x^2 + y - 5.94; % i.e. the equation is x^2+y=5.94
g = @(x,y) x + y^2 - 3.41; % similarly this represents equation x+y^2=3.41
F = @(x,y)[f(x,y); g(x,y)];
% Jacobian
% J = [df/dx, df/dy;
% dg/dx, dg/dy];
J = @(x,y) [2*x 1; 1 2*y];
% Initial guess
xy = [1; 1];
% Tolerance
tol = 10^-6;
err = 1;
while err>tol
xynew = xy - J(xy(1),xy(2))\F(xy(1),xy(2));
err = abs(xynew-xy);
xy = xynew;
end
disp(xy)
2.2000 1.1000
  3 comentarios
Alan Stevens
Alan Stevens el 12 de Feb. de 2023
Since Newton-Raphson is essentially numerical it seems pointless to use symbolics at all!
However, you might try J = @(x,y) j(x,y)
I don't have the symbolic toolbox, so can't actually check!
Torsten
Torsten el 12 de Feb. de 2023
% Functions
syms x y
f = x^2 + y - 5.94; % i.e. the equation is x^2+y=5.94
g = x + y^2 - 3.41; % similarly this represents equation x+y^2=3.41
F = [f; g];
% Jacobian
% J = [df/dx, df/dy;
% dg/dx, dg/dy];
J = jacobian(F);
F = matlabFunction(F)
F = function_handle with value:
@(x,y)[y+x.^2-2.97e+2./5.0e+1;x+y.^2-3.41e+2./1.0e+2]
J = matlabFunction(J)
J = function_handle with value:
@(x,y)reshape([x.*2.0,1.0,1.0,y.*2.0],[2,2])
% Initial guess
xy = [1; 1];
% Tolerance
tol = 10^-6;
err = 1;
while err>tol
xynew = xy - J(xy(1),xy(2))\F(xy(1),xy(2));
err = abs(xynew-xy);
xy = xynew;
end
disp(xy)
2.2000 1.1000
disp(F(xy(1),xy(2)))
1.0e-15 * 0.8882 0

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by