How to calculate R^2 using 1 - (SSR/SST)? For normal fit distribution.
23 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Macy
el 15 de Feb. de 2023
Comentada: Torsten
el 21 de Feb. de 2023
Hello, I have used the fitlm function to find R^2 (see below), to see how good of a fit the normal distribution is to the actual data. The answer is 0.9172.
How can I manually calculate R^2?
R^2 = 1 - (SSR/SST) or in other words 1 - ((sum(predicted - actual)^2) / ((sum(actual - mean of actual)^2)). I am having a hard time getting the correct answer.
Table = readtable("practice3.xlsx");
actual_values = Table.values;
actual_values = sort(actual_values);
normalfit = fitdist(actual_values,'Normal'); % fit the normal distribution to the data
cdfplot(actual_values); % Plot the empirical CDF
x = 0:2310;
hold on
plot(x, cdf(normalfit, x), 'Color', 'r') % plot the normal distribution
hold off
grid on
nonExceedanceProb = sum(actual_values'<=actual_values,2)/numel(actual_values);
Table.nonExceedanceProb=nonExceedanceProb;
mdl=fitlm(cdf(normalfit, actual_values),Table.nonExceedanceProb);
mdl.Rsquared.Ordinary % R^2
mdl.SSR
mdl.SST
% How can I manually calculate R^2 (or SSR and SST)?
% SSR = sum(((predicted data - actual data).^2))
% TSS = sum((actual data - mean(actual data)).^2)
% Rsquared = 1 - SSR/TSS
0 comentarios
Respuesta aceptada
Torsten
el 15 de Feb. de 2023
Editada: Torsten
el 15 de Feb. de 2023
In my opinion, it does not make sense to fit a linear function to the value pairs (cdf(normalfit, actual_values),Table.nonExceedanceProb) as you do above.
In principle, the blue points below should lie on the red line. This would mean that the empirical cdf is perfectly reproduced by the normal distribution.
So if you really want to compare the two distributions, you should consider the distance of the blue points (achieved quality of fit) to the red line (perfect fit).
Table = readtable("practice3.xlsx");
actual_values = Table.values;
actual_values = sort(actual_values);
normalfit = fitdist(actual_values,'Normal'); % fit the normal distribution to the data
nonExceedanceProb = sum(actual_values'<=actual_values,2)/numel(actual_values);
hold on
plot(nonExceedanceProb,cdf(normalfit, actual_values),'o')
plot([0 1],[0 1])
xlabel('P(empirical)')
ylabel('P(normal)')
hold off
grid on
12 comentarios
Torsten
el 21 de Feb. de 2023
corr(yi,fi) is the pearson correlation coeffcient - I don't know why he wanted to square it.
Anyway: congratulations that you finished your assignment successfully.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!