I am facing error while solving two 2nd order differential equation in which boundary condition are dependent to each other. Any idea where I am doing wrong??
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Amit kumar
el 17 de Feb. de 2023
Comentada: Amit kumar
el 21 de Feb. de 2023
clc
clear all;
close all;
syms psi_1(z)
syms psi_2(z)
K1=1
K2=1
K3=1
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2
ode2 = diff(psi_2,z,2)==K3
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1)
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
psi_1Sol(z) = dsolve(ode1,conds_1)
psi_2Sol(z) = dsolve(ode2,conds_2)
0 comentarios
Respuesta aceptada
Oguz Kaan Hancioglu
el 17 de Feb. de 2023
Since boundary conditions are related to each variable, solving all odes in one dsolve command may solve your problem.
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2)
Más respuestas (1)
Torsten
el 17 de Feb. de 2023
Editada: Torsten
el 17 de Feb. de 2023
syms y1(z) y2(z) z C11 C12 C21 C22
K1 = 1;
K2 = 1;
K3 = 1;
eqn1 = diff(y1,z,2) - y1/K1 == K2;
eqn2 = diff(y2,z,2) == K3;
sol1 = dsolve(eqn1);
var1 = symvar(sol1);
sol1 = subs(sol1,[var1(1),var1(2)],[C11 C12]);
sol2 = dsolve(eqn2);
var2 = symvar(sol2);
sol2 = subs(sol2,[var2(1) var2(2)],[C21 C22]);
eqn1_alg = subs(sol1,z,0)==0;
eqn2_alg = subs(diff(sol1,z),z,1)==subs(diff(sol2,z),z,1);
eqn3_alg = subs(sol1,z,1)==subs(sol2,z,1);
eqn4_alg = subs(sol2,z,2)==0.5;
sol_alg = solve([eqn1_alg,eqn2_alg,eqn3_alg,eqn4_alg],[C11 C12 C21 C22]);
sol1 = subs(sol1,[C11 C12],[sol_alg.C11 sol_alg.C12]);
sol2 = subs(sol2,[C21 C22],[sol_alg.C21 sol_alg.C22]);
figure(1)
hold on
fplot(sol1,[0 1])
fplot(sol2,[1 2])
hold off
grid on
@Oguz Kaan Hancioglu suggestion works, too:
syms psi_1(z)
syms psi_2(z)
K1=1;
K2=1;
K3=1;
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2;
ode2 = diff(psi_2,z,2)==K3;
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1);
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2);
figure(2)
hold on
fplot(psi_1Sol,[0 1])
fplot(psi_2Sol,[1 2])
hold off
grid on
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!