Matlab Transfer function multiple single s terms

3 visualizaciones (últimos 30 días)
Aaron Frost
Aaron Frost el 20 de Feb. de 2023
Comentada: Paul el 22 de Feb. de 2023
How can modify this script in order to get the transfer function shown in the picutre. Thanks.
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
A = 1/(C1*R2);
B = 1/(C2*R2);
C = (1/(C1*R1))*(1-G);
D = 1/(C1*C2*R1*R2);
G = (R3+R4)/R3;
%{
Numerator = {[G 0 0] };
Denominator = {[1 0] [A] [B] [C] [0 D]};
T = tf(Numerator, Denominator)
%}
T = tf([G 0 0], {[1] [A] [B] [C] [0 D]})

Respuesta aceptada

Sulaymon Eshkabilov
Sulaymon Eshkabilov el 20 de Feb. de 2023
Here it is:
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
G = (R3+R4)/R3;
A = 1/(C1*R2);
B = 1/(C2*R2);
C = (1/(C1*R1))*(1-G);
D = 1/(C1*C2*R1*R2);
%{
Numerator = {[G 0 0] };
Denominator = {[1 0] [A] [B] [C] [0 D]};
T = tf(Numerator, Denominator)
%}
T = tf([G 0 0], [1 (A+B+C) -D])
T = 21.74 s^2 -------------------------- s^2 - 1.378e07 s - 7.88e09 Continuous-time transfer function.

Más respuestas (1)

Walter Roberson
Walter Roberson el 20 de Feb. de 2023
syms G C_1 R_2 C_2 R_1 s R_3 R_4
G = (R_3 + R_4)/R_3
G = 
vratio = G*s^2/ ( s^2 + s * (1/(C_1*R_2) + 1/(C_2*R_2) + 1/(C_1*R_1)*(1-G)) + 1/(C_1*C_2*R_1*R_2) )
vratio = 
vex = expand(vratio);
[N, D] = numden(vex)
N = 
D = 
Nc = collect(N, s);
Dc = collect(D, s);
vpretty = Nc/Dc
vpretty = 
NCs = coeffs(Nc, s, 'all')
NCs = 
DCs = coeffs(Dc, s, 'all')
DCs = 
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
NC = double(subs(NCs, [C_1, C_2, R_1, R_2, R_3, R_4], [C1, C2, R1, R2, R3, R4]));
DC = double(subs(DCs, [C_1, C_2, R_1, R_2, R_3, R_4], [C1, C2, R1, R2, R3, R4]));
leading = DC(1);
NC = NC ./ leading;
DC = DC ./ leading;
sys = tf(NC, DC)
sys = 21.74 s^2 -------------------------- s^2 - 1.378e07 s + 7.88e09 Continuous-time transfer function.
  2 comentarios
Walter Roberson
Walter Roberson el 21 de Feb. de 2023
Note that the reason to solve symbolically is to construct a general form that multiple sets of resister and capacitor values could be substituted into. After calculating NCs and DCs you could use matlabFunction() to create functions that would accept numeric inputs and calculate the coefficients.
Paul
Paul el 22 de Feb. de 2023
But the CST can handle this directly without too much complication, even if the desire is to have a general expression
s = tf('s');
G = @(R_3,R_4) ((R_3 + R_4)/R_3);
vratio = @(C_1,C_2,R_1,R_2,R_3,R_4) G(R_3,R_4)*s^2/ ( s^2 + s * (1/(C_1*R_2) + 1/(C_2*R_2) + 1/(C_1*R_1)*(1-G(R_3,R_4))) + 1/(C_1*C_2*R_1*R_2) );
C1 = 0.000000000150;
C2 = 0.000000000470;
R1 = 10000;
R2 = 180000;
R3 = 2700;
R4 = 56000;
vratio(C1,C2,R1,R2,R3,R4)
ans = 21.74 s^2 -------------------------- s^2 - 1.378e07 s + 7.88e09 Continuous-time transfer function.
Unrelated comment, but I have my suspicions about the expression for vratio in the question. I thought that circuits composed of just (positive) resistors and (positive) capacitors can't be unstable, whereas vratio clearly is.

Iniciar sesión para comentar.

Categorías

Más información sobre Programming en Help Center y File Exchange.

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by