lsqcurvefit for multiple variables optimization
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Nhat Nguyen
el 6 de Mzo. de 2023
Editada: Nhat Nguyen
el 7 de Mzo. de 2023
Hi experts,
I have a set of data which is in the cartesian coordinates (xOy) but needs to be moved a distance (say xc, yc) and rotate an angle (theta) (still cartesian coordinates) to fitting the theoretical value calculated from ode45 function.
In previous code, I transform data by manual procedure and then use lsqcurvefit to fitting the data, with B and L are optimization variables.
lb=[0, 1];
ub=[2, 2.8];
p0=[0.5 2.7];
p=lsqcurvefit(@(p,y_exp) pendant_bubble_arc_d(p,y_exp),p0,y_exp,x_exp,lb,ub);
function x_model = pendant_bubble_arc_d(p, y_exp)
global l_exp
B = p(1);
L=p(2);
% initial conditions
y0= zeros(5,1);
sspan = [0 l_exp/L]; y_solver=[];
options = odeset('RelTol',1e-8,'AbsTol',1e-8,'MaxStep',5e-2);
% call the ODE solver
[~, y_solver] = ode45(@(t,y) pendant_bubble_arc_f(t,y,B), sspan, y0, options);
% model prediction
x_model = interp1( y_solver(:,2)*L, y_solver(:,1)*L, y_exp,'spline',2);
return;
The code run successfully and result is correct. However, my PI also needs xc, yc, theta are optimization values for lsqcurvefit function.
And this my idea for the problem:
lb=[0, 1, 0, 0, 0];
ub=[2, 2.8, 5, 5, 5];
p0=[0.5, 2, 2.5, 0.8, 1 ];
p= lsqcurvefit(@(p,y_exp) lsq_function(p,y_exp),p0,y_exp,x_exp,lb,ub);
function x_model = lsq_function(p, y_exp)
global l_exp
B = p(1);
L=p(2);
yc=p(4);
xc=p(3);
theta=p(5);
% initial conditions
y0= zeros(5,1);
sspan = [0 l_exp/L]; y_solver=[];
options = odeset('RelTol',1e-8,'AbsTol',1e-8,'MaxStep',5e-2);
% call the ODE solver
[~, y_solver] = ode45(@(t,y) YL_function(t,y,B), sspan, y0, options);
% transforming coordinates
R=[cosd(theta) sind(theta); -sind(theta) cosd(theta)];
y_trans(:,1)=y_solver(:,1)+xc;
y_trans(:,2)=y_solver(:,2)+yc;
y_rotate=R*y_trans';
% model prediction
x_model = interp1(y_rotate(:,2)*L, y_rotate(:,1)*L, y_exp,'spline',2);
return;
Although the code does not have any error, but it does not return the values I expect. The code just return value slightly change from initial guess (few percents). I just learning this and do not have sufficient knowledge about matlab. So if you have any ideas how I should modify the code, please let me know.
Thank you!
P/s: if the question is unclear, please pointed it and I will explain.
function f=YL_function(s,y,B)
r = y(1); % radial distance
h = y(2); % height
theta = y(3); % angle
V = y(4); % volume
A = y(5); % surface area
f(1) = cos(theta);
f(2) = sin(theta);
if s==0
f(3) = 1/B;
else
f(3) = 2/B-h-sin(theta)./r;
end
f(4) = pi*r^.2*sin(theta);
f(5) = 2*pi*r;
f=f';
This is function YL_function (also pendant_bubble_arc_f in upper code).
0 comentarios
Respuesta aceptada
Torsten
el 6 de Mzo. de 2023
Movida: Torsten
el 6 de Mzo. de 2023
We need your "YL_function" to see what's happening.
I wonder whether your transformation is correct.
I would have thought
y_rotate = [cosd(theta) -sind(theta); sind(theta) cosd(theta)]*[y_solver(:,1),y_solver(:,2)].' + [xc;yc];
but maybe I'm mistaken.
7 comentarios
Torsten
el 7 de Mzo. de 2023
Btw can you explain why changing sspan is make this code working instead of old expression?
This didn't make the code work. The main point was to transpose y_rotate:
y_rotate = y_rotate.';
Más respuestas (0)
Ver también
Categorías
Más información sobre Least Squares en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!