I get this error trying to find Hausdorff dist Array formation and parentheses-style indexing with objects of class 'matlab.io.datastore.PixelLabelDatastore' is not allowed.
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I am trying to test the performance of my trained network and I get the following error:
[hd D] = HausdorffDist(pxdsResults,pxdsTruth,0);
Array formation and parentheses-style indexing with objects of
class 'matlab.io.datastore.PixelLabelDatastore' is not allowed.
Use objects of class 'matlab.io.datastore.PixelLabelDatastore'
only as scalars or use a cell array.
Error in HausdorffDist (line 120)
cP=P(combos(:,1),:);
This is my code :
clear all
close all
clc
dataSetDir = fullfile('LungTS','preprocessedDataset');
testImagesDir = fullfile(dataSetDir,'imagesTest');
imdReader = @(x) matRead(x);
imds = imageDatastore(testImagesDir, ...
'FileExtensions','.mat','ReadFcn',imdReader);
%imds = imageDatastore(testImagesDir);
% classNames = ["nodule" "background"];%The labels for results are ["background" "tumor"], so we should use the same label
classNames = ["background" "tumor"];%%%I add this line.
% labelIDs = [255 0];%The numbers in corresponding .mat data are 0 and 1 (not 0 and 255).
labelIDs = [0 1];%I add this line
labelReader = @(x) matRead(x);
testLabelsDir = fullfile(dataSetDir,'labelsTest');
pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs, ...
'FileExtensions','.mat','ReadFcn',labelReader);
net = load('HybridNetwork-160');
net = net.net;
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);
metrics.ClassMetrics
metrics.ConfusionMatrix
cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
classNames, 'Normalization','row-normalized');%The format corrected.
% classNames, Normalization ='row-normalized');%Wrong format
cm.Title = 'Normalized Confusion Matrix (%)';
imageIoU = metrics.ImageMetrics.MeanIoU;
%figure
%histogram(imageIoU)
%title('Image Mean IoU')
[minIoU, worstImageIndex] = min(imageIoU);
minIoU = minIoU(1);
worstImageIndex = worstImageIndex(1);
worstTestImage = readimage(imds,worstImageIndex);%ehsan: %size is [32 32 32]
worstTrueLabels = readimage(pxdsTruth,worstImageIndex);
worstPredictedLabels = readimage(pxdsResults,worstImageIndex);
worstTrueLabelImage = im2uint8(worstTrueLabels == classNames(1));%ehsan: %size is [32 32 32]
worstPredictedLabelImage = im2uint8(worstPredictedLabels == classNames(1));%ehsan: %size is [32 32 32]
figure,subplot(1,3,1),montage(worstTestImage,'Size',[8 4]),title('Worst Test Image')
subplot(1,3,2),montage(worstTrueLabelImage,'Size',[8 4]),title('Truth')
subplot(1,3,3),montage(worstPredictedLabelImage,'Size',[8 4]),title(['Prediction. IoU = ', num2str(minIoU)])
% title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(minIoU)])
[maxIoU, bestImageIndex] = max(imageIoU);
maxIoU = maxIoU(1);
bestImageIndex = bestImageIndex(1);
bestTestImage = readimage(imds,bestImageIndex);
bestTrueLabels = readimage(pxdsTruth,bestImageIndex);
bestPredictedLabels = readimage(pxdsResults,bestImageIndex);
bestTrueLabelImage = im2uint8(bestTrueLabels == classNames(1));
bestPredictedLabelImage = im2uint8(bestPredictedLabels == classNames(1));
bestTrueLabelImage(bestTrueLabelImage==0)=2;
bestTrueLabelImage(bestTrueLabelImage==255)=0;
bestTrueLabelImage(bestTrueLabelImage==2)=255;
bestPredictedLabelImage(bestPredictedLabelImage==0)=2;
bestPredictedLabelImage(bestPredictedLabelImage==255)=0;
bestPredictedLabelImage(bestPredictedLabelImage==2)=255;
figure,subplot(1,3,1),montage(bestTestImage,'Size',[8 4]),title('Best Test Image')
subplot(1,3,2),montage(bestTrueLabelImage,'Size',[8 4]),title('Truth')
subplot(1,3,3),montage(bestPredictedLabelImage,'Size',[8 4]),title(['Prediction. IoU = ', num2str(maxIoU)])
% title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(maxIoU)])
evaluationMetrics = ["accuracy" "iou"];
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,"Metrics",evaluationMetrics);
metrics.ClassMetrics
confmat = metrics.ConfusionMatrix ;
TP = table2array(confmat(2, 2));
TN = table2array(confmat(1, 1));
FP = table2array(confmat(1, 2));
FN = table2array(confmat(2, 1));
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Sensitivity = TP / (FN + TP)
specificity = TN / (TN + FP)
precision = (TP)/(TP+FP)
Dice=(2*TP)/(2*TP+FP+FN)
MCC=(TP*TN-FP*FN)/sqrt((TP+FN)*(TP+FP)*(TN+FP)*(TN+FN))
Recall=(TP/(TP+FN))
F_score =(2*TP)/((2*TP)+FP+FN)
[hd D] = HausdorffDist(pxdsResults,pxdsTruth,0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The folowing is the the hasdruf function I am using:
function [hd D] = HausdorffDist(P,Q,lmf,dv)
% Calculates the Hausdorff Distance between P and Q
%
% hd = HausdorffDist(P,Q)
% [hd D] = HausdorffDist(P,Q)
% [hd D] = HausdorffDist(...,lmf)
% [hd D] = HausdorffDist(...,[],'visualize')
%
% Calculates the Hausdorff Distance, hd, between two sets of points, P and
% Q (which could be two trajectories). Sets P and Q must be matrices with
% an equal number of columns (dimensions), though not necessarily an equal
% number of rows (observations).
%
% The Directional Hausdorff Distance (dhd) is defined as:
% dhd(P,Q) = max p c P [ min q c Q [ ||p-q|| ] ].
% Intuitively dhd finds the point p from the set P that is farthest from
% any point in Q and measures the distance from p to its nearest neighbor
% in Q.
%
% The Hausdorff Distance is defined as max{dhd(P,Q),dhd(Q,P)}
%
% D is the matrix of distances where D(n,m) is the distance of the nth
% point in P from the mth point in Q.
%
% lmf: If the size of P and Q are very large, the matrix of distances
% between them, D, will be too large to store in memory. Therefore, the
% function will check your available memory and not build the D matrix if
% it will exceed your available memory and instead use a faster version of
% the code. If this occurs, D will be returned as the empty matrix. You may
% force the code to forgo the D matrix even for small P and Q by calling the
% function with the optional 3rd lmf variable set to 1. You may also force
% the function to return the D matrix by setting lmf to 0. lmf set to []
% allows the code to automatically choose which mode is appropriate.
%
% Including the 'vis' or 'visualize' option plots the input data of
% dimension 1, 2 or 3 if the small dataset algorithm is used.
%
% Performance Note: Including the lmf input increases the speed of the
% algorithm by avoiding the overhead associated with checking memory
% availability. For the lmf=0 case, this may represent a sizeable
% percentage of the entire run-time.
%
%
% %%% ZCD Oct 2009 %%%
% Edits ZCD: Added the matrix of distances as an output. Fixed bug that
% would cause an error if one of the sets was a single point. Removed
% excess calls to "size" and "length". - May 2010
% Edits ZCD: Allowed for comparisons of N-dimensions. - June 2010
% Edits ZCD: Added large matrix mode to avoid insufficient memory errors
% and a user input to control this mode. - April 2012
% Edits ZCD: Using bsxfun rather than repmat in large matrix mode to
% increase performance speeds. [update recommended by Roel H on MFX] -
% October 2012
% Edits ZCD: Added a plotting function for visualization - October 2012
%
sP = size(P); sQ = size(Q);
if ~(sP(2)==sQ(2))
error('Inputs P and Q must have the same number of columns')
end
if nargin > 2 && ~isempty(lmf)
% the user has specified the large matrix flag one way or the other
largeMat = lmf;
if ~(largeMat==1 || largeMat==0)
error('3rd ''lmf'' input must be 0 or 1')
end
else
largeMat = 0; % assume this is a small matrix until we check
% If the result is too large, we will not be able to build the matrix of
% differences, we must loop.
if sP(1)*sQ(1) > 2e6
% ok, the resulting matrix or P-to-Q distances will be really big, lets
% check if our memory can handle the space we'll need
memSpecs = memory; % load in memory specifications
varSpecs = whos('P','Q'); % load in variable memory specs
sf = 10; % build in a saftey factor of 10 so we don't run out of memory for sure
if prod([varSpecs.bytes]./[sP(2) sQ(2)]) > memSpecs.MaxPossibleArrayBytes/sf
largeMat = 1; % we have now concluded this is a large matrix situation
end
end
end
if largeMat
% we cannot save all distances, so loop through every point saving only
% those that are the best value so far
maxP = 0; % initialize our max value
% loop through all points in P looking for maxes
for p = 1:sP(1)
% calculate the minimum distance from points in P to Q
minP = min(sum( bsxfun(@minus,P(p,:),Q).^2, 2));
if minP>maxP
% we've discovered a new largest minimum for P
maxP = minP;
end
end
% repeat for points in Q
maxQ = 0;
for q = 1:sQ(1)
minQ = min(sum( bsxfun(@minus,Q(q,:),P).^2, 2));
if minQ>maxQ
maxQ = minQ;
end
end
hd = sqrt(max([maxP maxQ]));
D = [];
else
% we have enough memory to build the distance matrix, so use this code
% obtain all possible point comparisons
iP = repmat(1:sP(1),[1,sQ(1)])';
iQ = repmat(1:sQ(1),[sP(1),1]);
combos = [iP,iQ(:)];
% get distances for each point combination
cP=P(combos(:,1),:);
cQ=Q(combos(:,2),:);
dists = sqrt(sum((cP - cQ).^2,2));
% Now create a matrix of distances where D(n,m) is the distance of the nth
% point in P from the mth point in Q. The maximum distance from any point
% in Q from P will be max(D,[],1) and the maximum distance from any point
% in P from Q will be max(D,[],2);
D = reshape(dists,sP(1),[]);
% Obtain the value of the point, p, in P with the largest minimum distance
% to any point in Q.
vp = max(min(D,[],2));
% Obtain the value of the point, q, in Q with the largets minimum distance
% to any point in P.
vq = max(min(D,[],1));
hd = max(vp,vq);
end
% - visualization ---
if nargin==4 && any(strcmpi({'v','vis','visual','visualize','visualization'},dv))
if largeMat == 1 || sP(2)>3
warning('MATLAB:actionNotTaken',...
'Visualization failed because data sets were too large or data dimensionality > 3.')
return;
end
% visualize the data
figure
subplot(1,2,1)
hold on
axis equal
% need some data for plotting
[mp ixp] = min(D,[],2);
[mq ixq] = min(D,[],1);
[mp ixpp] = max(mp);
[mq ixqq] = max(mq);
[m ix] = max([mq mp]);
if ix==2
ixhd = [ixp(ixpp) ixpp];
xyf = [Q(ixhd(1),:); P(ixhd(2),:)];
else
ixhd = [ixqq ixq(ixqq)];
xyf = [Q(ixhd(1),:); P(ixhd(2),:)];
end
% -- plot data --
if sP(2) == 2
h(1) = plot(P(:,1),P(:,2),'bx','markersize',10,'linewidth',3);
h(2) = plot(Q(:,1),Q(:,2),'ro','markersize',8,'linewidth',2.5);
% draw all minimum distances from set P
Xp = [P(1:sP(1),1) Q(ixp,1)];
Yp = [P(1:sP(1),2) Q(ixp,2)];
plot(Xp',Yp','-b');
% draw all minimum distances from set Q
Xq = [P(ixq,1) Q(1:sQ(1),1)];
Yq = [P(ixq,2) Q(1:sQ(1),2)];
plot(Xq',Yq','-r');
% denote the hausdorff distance
h(3) = plot(xyf(:,1),xyf(:,2),'-ks','markersize',12,'linewidth',2);
uistack(fliplr(h),'top')
xlabel('Dim 1'); ylabel('Dim 2');
title(['Hausdorff Distance = ' num2str(m)])
legend(h,{'P','Q','Hausdorff Dist'},'location','best')
elseif sP(2) == 1
ofst = hd/2; % plotting offset
h(1) = plot(P(:,1),ones(1,sP(1)),'bx','markersize',10,'linewidth',3);
h(2) = plot(Q(:,1),ones(1,sQ(1))+ofst,'ro','markersize',8,'linewidth',2.5);
% draw all minimum distances from set P
Xp = [P(1:sP(1)) Q(ixp)];
Yp = [ones(sP(1),1) ones(sP(1),1)+ofst];
plot(Xp',Yp','-b');
% draw all minimum distances from set Q
Xq = [P(ixq) Q(1:sQ(1))];
Yq = [ones(sQ(1),1) ones(sQ(1),1)+ofst];
plot(Xq',Yq','-r');
% denote the hausdorff distance
h(3) = plot(xyf(:,1),[1+ofst;1],'-ks','markersize',12,'linewidth',2);
uistack(fliplr(h),'top')
xlabel('Dim 1'); ylabel('visualization offset');
set(gca,'ytick',[])
title(['Hausdorff Distance = ' num2str(m)])
legend(h,{'P','Q','Hausdorff Dist'},'location','best')
elseif sP(2) == 3
h(1) = plot3(P(:,1),P(:,2),P(:,3),'bx','markersize',10,'linewidth',3);
h(2) = plot3(Q(:,1),Q(:,2),Q(:,3),'ro','markersize',8,'linewidth',2.5);
% draw all minimum distances from set P
Xp = [P(1:sP(1),1) Q(ixp,1)];
Yp = [P(1:sP(1),2) Q(ixp,2)];
Zp = [P(1:sP(1),3) Q(ixp,3)];
plot3(Xp',Yp',Zp','-b');
% draw all minimum distances from set Q
Xq = [P(ixq,1) Q(1:sQ(1),1)];
Yq = [P(ixq,2) Q(1:sQ(1),2)];
Zq = [P(ixq,3) Q(1:sQ(1),3)];
plot3(Xq',Yq',Zq','-r');
% denote the hausdorff distance
h(3) = plot3(xyf(:,1),xyf(:,2),xyf(:,3),'-ks','markersize',12,'linewidth',2);
uistack(fliplr(h),'top')
xlabel('Dim 1'); ylabel('Dim 2'); zlabel('Dim 3');
title(['Hausdorff Distance = ' num2str(m)])
legend(h,{'P','Q','Hausdorff Dist'},'location','best')
end
subplot(1,2,2)
% add offset because pcolor ignores final rows and columns
[X Y] = meshgrid(1:(sQ(1)+1),1:(sP(1)+1));
hpc = pcolor(X-0.5,Y-0.5,[[D; D(end,:)] [D(:,end); 0]]);
set(hpc,'edgealpha',0.25)
xlabel('ordered points in Q (o)')
ylabel('ordered points in P (x)')
title({'Distance (color) between points in P and Q';...
'Hausdorff distance outlined in white'})
colorbar('location','SouthOutside')
hold on
% bug: does not draw when hd is the very last point
rectangle('position',[ixhd(1)-0.5 ixhd(2)-0.5 1 1],...
'edgecolor','w','linewidth',2);
end
Can anyone help me how to modify these data please????????
0 comentarios
Respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!