How can I plot a second order differential equation with boundary condition using fourth order Runge-Kutta method?
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Dhananjay Verma Kaalkhanday
el 17 de Mzo. de 2023
Comentada: John D'Errico
el 17 de Mzo. de 2023
%%%%%%%%%%%%%%%% Runga-Kutta%%%%%%%%%%%%%%%%
h=0.0001;
xfinal=d;
x(1)=0;
y(1)=0; % initial value of y
y(xfinal)=0; % final value of y
% Let y' = z (f1) and y" = z' (f2);
f1 = @(x, y, z) z;
f2 = @(x, y, z) ky^2*y-(ky*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d))*y)/(OP3-ky*u0*(sin(pi*x/d).^2-1/2)+...
B*(OP3-ky*u0*(sin(pi*x/d).^2-1/2)-A*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d)-ky*(OP3-ky*u0*(sin(pi*x/d).^2-1/2))))*(1-...
M*(opi^2)/(M*OP3^2-gi*Ti*ky^2)));
for i=1:ceil(xfinal/h)
x(i+1)=x(i)+h;
K1y = f1(x(i), y(i), z(i));
K1z = f2(x(i), y(i), z(i));
K2y = f1(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K2z = f2(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K3y = f1(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K3z = f2(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K4y = f1(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
K4z = f2(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
y(i+1) = y(i)+(K1y+2*K2y+2*K3y+K4y)*h/6;
z(i+1) = z(i)+(K1z+2*K2z+2*K3z+K4z)*h/6;
end
plot(x,y,'-','linewidth',1)
hold on
1 comentario
John D'Errico
el 17 de Mzo. de 2023
It looks like you already solved the ODE, and plotted it. Where is the problem? (Even so, if this were not homework, as it surely is, you should be using an ODE solver, not writing your own code.)
Respuestas (1)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!