Bisection function to determine the value of (k) not working.
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ABDALLA AL KHALEDI
el 18 de Mzo. de 2023
Comentada: ABDALLA AL KHALEDI
el 18 de Mzo. de 2023
Here is the bisection function
function [k,e] = bisect(f,a,b,n)
% function [k e] = mybisect(f,a,b,n)
% Does n iterations of the bisection method for a function f
% Inputs: f -- a function
% a,b -- left and right edges of the interval
% n -- the number of bisections to do.
% Outputs: x -- the estimated solution of f(x) = 0
% e -- an upper bound on the error
% evaluate at the ends and make sure there is a sign change
c = f(a);
d = f(b);
if c*d > 0
error('Function has same sign at both endpoints.')
end
disp(' k y')
for i = 1:n
% find the middle and evaluate there
k = (a + b)/2;
y = f(k);
disp([ k y])
if y == 0.0 % solved the equation exactly
a = k;
b = k;
break % jumps out of the for loop
end
% decide which half to keep, so that the signs at the ends differ
if c*y < 0
b=k;
else
a=k;
end
end
% set the best estimate for x and the error bound
k = (a + b)/2;
e = (b-a)/2;
end
And this is the function I am trying to apply it to (everything is known except for k, and the equation is equal to zero). For example, d = 0.5, H = 0.05, and L = 11.07.
(L/d)-((4*ellipticK(k))/(3*H/d)^0.5)*...
(1+(H/d)*((5/8)-(3/2)*(ellipticE(k)/ellipticK(k)))...
+((H/d)^2)*((-21/128)+(1/16)*(ellipticE(k)/ellipticK(k))+(3/8)*(ellipticE(k)/ellipticK(k))^2)...
+((H/d)^3)*((20127/179200)-(409/6400)*(ellipticE(k)/ellipticK(k))+(7/64)*(ellipticE(k)/ellipticK(k))^2+(1/16)*(ellipticE(k)/ellipticK(k))^3)...
+((H/d)^4)*((-1575087/28672000)+(1086367/1792000)*(ellipticE(k)/ellipticK(k))...
-(2679/25600)*(ellipticE(k)/ellipticK(k))^2+(13/128)*(ellipticE(k)/ellipticK(k))^3+(3/128)*(ellipticE(k)/ellipticK(k))^4))
2 comentarios
Respuesta aceptada
Torsten
el 18 de Mzo. de 2023
Editada: Torsten
el 18 de Mzo. de 2023
Please fill in the missing values and try again.
If you don't succeed, it usually helps to plot f in the range 1e-12:1-1e-12 for k before calling a root finder.
L = ...
H = ...
d = ...
f = @(k) (L/d)-((4*ellipticK(k))/(3*H/d)^0.5)*...
(1+(H/d)*((5/8)-(3/2)*(ellipticE(k)/ellipticK(k)))...
+((H/d)^2)*((-21/128)+(1/16)*(ellipticE(k)/ellipticK(k))+(3/8)*(ellipticE(k)/ellipticK(k))^2)...
+((H/d)^3)*((20127/179200)-(409/6400)*(ellipticE(k)/ellipticK(k))+(7/64)*(ellipticE(k)/ellipticK(k))^2+(1/16)*(ellipticE(k)/ellipticK(k))^3)...
+((H/d)^4)*((-1575087/28672000)+(1086367/1792000)*(ellipticE(k)/ellipticK(k))...
-(2679/25600)*(ellipticE(k)/ellipticK(k))^2+(13/128)*(ellipticE(k)/ellipticK(k))^3+(3/128)*(ellipticE(k)/ellipticK(k))^4));
a = ...
b = ...
n = ...
[k e] = bisect(f,a,b,n)
function [k,e] = bisect(f,a,b,n)
% function [k e] = mybisect(f,a,b,n)
% Does n iterations of the bisection method for a function f
% Inputs: f -- a function
% a,b -- left and right edges of the interval
% n -- the number of bisections to do.
% Outputs: x -- the estimated solution of f(x) = 0
% e -- an upper bound on the error
% evaluate at the ends and make sure there is a sign change
c = f(a);
d = f(b);
if c*d > 0
error('Function has same sign at both endpoints.')
end
disp(' k y')
for i = 1:n
% find the middle and evaluate there
k = (a + b)/2;
y = f(k);
disp([ k y])
if y == 0.0 % solved the equation exactly
a = k;
b = k;
break % jumps out of the for loop
end
% decide which half to keep, so that the signs at the ends differ
if c*y < 0
b=k;
else
a=k;
end
end
% set the best estimate for x and the error bound
k = (a + b)/2;
e = (b-a)/2;
end
Más respuestas (0)
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!