Histogram with overlapping bins
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Is there a fast way to code this ?
Say, X= [101 202 303 505] is the set of values to be binned,
and Y=
[0 100 200 300 400; 200 300 400 500 600] has information about the bin-edges, with the first row containing lower-bin edges and the second row containing upper bin-edges (so that successive bins are 0-200, 100-300, 200-400, 300-500, and 400-600)
and the result is [1,2,2,1,2].
Normally I would code this as:
out=NaN(1,size(Y,1)); for i=1:length(out) out(i) = length(find( X<=Y(2,i)&X>Y(1,i) ); end
Is there a faster/more succinct way, using a vectorized function ?
Thanks, Suresh
0 comentarios
Respuesta aceptada
Jan
el 24 de Feb. de 2011
At first I'd use SUM:
out = NaN(1,size(Y,2)); % Edited: 1->2
for i=1:length(out)
out(i) = sum(X<=Y(2,i) & X>Y(1,i));
end
But for large array HISTC is much faster:
X = rand(1, 10000)*1000;
Y = 0:100:1000;
N = histc(X, Y);
N_200blocks = N + [N(2:end), 0];
EDITED: (Walter discovered my misunderstanding about the last bin) Read the help text of HISTC for the last element of N_200blocks. I assume you can omit it in the output.
5 comentarios
Jan
el 24 de Feb. de 2011
No, HISTC does not work for overlapping bins. Therefore I split the overlapping intervals to non-overlappings ones and add the contents of the separate bins such, that the results equal the overlapping bins. Example: n=HISTC(X, [0,100,200,300]) => n=[1x4]. Now the number of elements in 0:200 is n(1)+n(2), and for 100:300 it is n(2)+n(3), or according to your data n(2)+n(3)+n(4). As long as all bins overlap pairwise, this method works.
Did you run my code?
Más respuestas (1)
Bruno Luong
el 24 de Feb. de 2011
You might try this code using my mcolon function:
% Data
Y=[0 100 200 300 400;
200 300 400 500 600]
X= [101 202 303 505]
% Full vectorized Engine
lo = Y(1,:);
hi = Y(2,:);
nbin = size(lo,2);
[~, ilo] = histc(X, [lo Inf]);
[~, ihi] = histc(X, [-Inf hi]);
% Test if they belong to the bracket
tf = ilo & ihi & (ilo >= ihi);
left = ihi(tf);
right = ilo(tf);
loc = mcolon(left,right); % FEX
count = accumarray(loc(:),1,[nbin 1])'
Bin belonging follows closed-left/open-right bracket convention. Reverse the sign of X, Y if you prefer the opposite.
2 comentarios
Bruno Luong
el 25 de Feb. de 2011
I never see the same bin-width, or pair-wise overlapping has been specified in the question. It just shows as such in the example.
Ver también
Categorías
Más información sobre Data Distribution Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!