Numerically solving a diffusion equation with a piecewise initial condition
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Bas123
el 25 de Abr. de 2023
Comentada: Alexander
el 2 de Dic. de 2023
Consider the diffusion equation given by
with initial conditions
and boundary conditions
.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1366094/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1366099/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1366104/image.png)
I wish to numerically solve this equation by the finite difference formula
where
with ∆x = 0.1 and ∆t = 0.01. The exact solution is given by
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1366109/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1366114/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1366119/image.png)
Here is the code that I have worked out so far.
clear all
D = 1/4;
dx = 0.1;
dt = 0.01;
x = 0:dx:1;
t = 0:dt:1;
Nx = length(x);
Nt = length(t);
u = zeros(Nx, Nt);
u(x<=1/2,1) = x(x<=1/2);
u(x>1/2,1) = 1 - x(x>1/2);
u(1,:) = 0;
u(Nx,:) = 0;
for j = 1:Nt-1
for i = 2:Nx-1
u(i,j+1) = D*(dt/dx^2)*(u(i+1,j) + u(i-1,j)) + (1-2*D*(dt/dx^2))*(u(i,j));
end
end
% Compute the analytical solution V(x,t)
k = 1:100;
V = zeros(length(x), length(t));
for j = 1:Nt
for i = 1:Nx
V(i,j) = sum((4./(k.*pi).^2).*sin(k.*pi/2).* sin(k.*pi.*x(i)).*exp(-D.*t(j).*(k.*pi).^2));
end
end
% Plot the numerical and exact solutions
figure;
[X,T] = meshgrid(x,t);
surf(X,T,u');
xlabel('x');
ylabel('t');
zlabel('u(x,t)');
title('Numerical solution');
figure;
surf(X,T,V');
xlabel('x');
ylabel('t');
zlabel('V(x,t)');
title('Exact solution');
However, there seems to be something wrong with the code. Any support would be greatly appreciated.
3 comentarios
Alexander
el 2 de Dic. de 2023
Hi! This was really helpful code for a HW assignment I'm working on. My graphs are a little wacky as well, I am using different differencing schemes, but I think the problem may lie in your parameters. I think by finding the correct dx and dt you may be able to generate smoother graphs.
However I am also pretty new to this and not sure exactly how to find the best spatial and time step sizes. Good luck!
Respuesta aceptada
Torsten
el 25 de Abr. de 2023
Editada: Torsten
el 25 de Abr. de 2023
I changed
V(i,j) = sum((4./(k.*pi).^2).*sin(k.*pi/2).* sin(k.*pi.*x(j)).*exp(-0.5.*t(i).*(k.*pi).^2));
to
V(i,j) = sum((4./(k.*pi).^2).*sin(k.*pi/2).* sin(k.*pi.*x(i)).*exp(-D.*t(j).*(k.*pi).^2));
in your code and the results look at least similar.
You should check the results in detail, i.e. plots of u over x for some times t or plots of u over t for some positions x. A surface plot looks fine, but is not suited to find errors or unprecise results.
Más respuestas (0)
Ver también
Categorías
Más información sobre Eigenvalue Problems en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!