What is the criteria behind choosing number of neurons and layers in this MATLAB example? "Solve Partial Differential Equation with LBFGS Method and Deep Learning"

5 visualizaciones (últimos 30 días)
The number of layers and neurons in this example, "Solve Partial Differential Equation with LBFGS Method and Deep Learning," are set to 9 and 20, respectively.
Which criteria would be used to select these numbers? then why?
Thanks in advance.

Respuesta aceptada

Ranjeet
Ranjeet el 12 de Mayo de 2023
The work starts by taking 9 hidden layers and 20 neurons in each. This should be the motivation behind taking the same network architecture and experiment.
However, Table 2 on page 9 in the above article shows experimentation with different number of layers and neurons as well. It is clear from the table that taking a greater number of layers and neurons have decreased the error metric. Taking 9 hidden layers and 20 neurons is a good trade-off between accuracy and network size.
Following is the part 2 of the work, it can be referred for more in-depth analysis -

Más respuestas (0)

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by