Borrar filtros
Borrar filtros

Importing pytorch models in matlab using importNetworkFromPyTorch

67 visualizaciones (últimos 30 días)
Hello,
I am trying to import the pre-trained pytorch model in matlab using the importNetworkFromPyTorch command supported by deep learning toolbox. However I am getting an error as below
Error using pytorchmex
Traced model failed to load. Trace the model in the fully supported version of PyTorch as described in Deep
Learning Toolbox Converter for PyTorch Models.
Error in nnet.internal.cnn.pytorch_importer.architecture.ModuleManager/loadModule (line 28)
PropertyCell = nnet.internal.cnn.pytorch_importer.architecture.pytorchmex(this.Filename);
Error in nnet.internal.cnn.pytorch_importer.architecture.ModuleManager (line 16)
PropertyCell = loadModule(this);
Error in nnet.internal.cnn.pytorch_importer.architecture.util.translatePyTorchFile (line 9)
nnet.internal.cnn.pytorch_importer.architecture.ModuleManager(filename);
Error in nnet.internal.cnn.pytorch_importer.architecture.importNetworkFromPyTorch (line 18)
importManager = nnet.internal.cnn.pytorch_importer.architecture.util.translatePyTorchFile(filename,
customLayerPath);
Error in importNetworkFromPyTorch (line 36)
Network = nnet.internal.cnn.pytorch_importer.architecture.importNetworkFromPyTorch(modelfile, varargin{:});
Error in mnist2mat (line 1)
net = importNetworkFromPyTorch("mnist_cnn.pt");

Respuesta aceptada

MathWorks Deep Learning Toolbox Team
MathWorks Deep Learning Toolbox Team el 16 de Abr. de 2024
The model must be traced in PyTorch first before importing into MATLAB. Please see PyTorch documentation fo some details on how it's done. https://pytorch.org/docs/stable/generated/torch.jit.trace.html
As a simple example, try something similar to the following in PyTorch:
# This example loads a pretrained PyTorch model from torchvision,
# traces it with example inputs, and saves the trace as a .pt file.
import torch
from torchvision import models
# Load the model with pretrained weights
model = models.mobilenet_v2(pretrained=True)
# Call "eval" to ensure that layers like batch norm and dropout are set to
# inference mode
model.eval()
# Move the model to the CPU
model.to("cpu")
# Create example inputs
X = torch.rand(1, 3, 224, 224)
# Trace model with the example input
traced_model = torch.jit.trace(model.forward, X)
# Save the traced model to a .pt file
traced_model.save('traced_mnasnet.pt')

Más respuestas (0)

Productos


Versión

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by