Problem while implementing "Gradient Descent Algorithm" in Matlab

10 visualizaciones (últimos 30 días)
I'm solving a programming assignment in machine learning course. In which I've to implement "Gradient Descent Algorithm" like below
I'm using the following code
data = load('ex1data1.txt');
% text file conatins 2 values in each row separated by commas
X = [ones(m, 1), data(:,1)];
theta = zeros(2, 1);
iterations = 1500;
alpha = 0.01;
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
k=1:m;
j1=(1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k))
j2=((1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k)))*(X(k,2))
theta(1)=theta(1)-alpha*(j1);
theta(2)=theta(2)-alpha*(j2);
J_history(iter) = computeCost(X, y, theta);
end
end
theta = gradientDescent(X, y, theta, alpha, iterations);
On running the above code I'm getting this error message
  3 comentarios
Nancy Irisarri
Nancy Irisarri el 13 de Mayo de 2019
Calculation of k can be outside the for loop. Improves performance!
Ashok Saini
Ashok Saini el 4 de Jul. de 2022
hey have u found answer of your question

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 11 de Abr. de 2015
j2 is not a scalar, but you are trying to assign it to a scalar location theta(2).
Did you intend for this line
k=1:m;
to be a for-loop
for k=1:m
  2 comentarios
Atinesh S
Atinesh S el 11 de Abr. de 2015
Why j2 is not scalar, the expression
(1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k))
is producing scalar result which can be multiplied by
X(k,2)
to produce scalar result. But on the matlab, I've also seen the result that is going to be stored in j2 is a vector. But Why ??
Matt J
Matt J el 12 de Abr. de 2015
k is not a scalar. You defined it to be the vector 1:m. Therefore X(k,2) is also a vector.

Iniciar sesión para comentar.

Más respuestas (11)

Jayan Joshi
Jayan Joshi el 15 de Oct. de 2019
Editada: Jayan Joshi el 15 de Oct. de 2019
predictions =X*theta;
theta=theta-(alpha/m*sum((predictions-y).*X))';

Margo Khokhlova
Margo Khokhlova el 19 de Oct. de 2015
Editada: Walter Roberson el 19 de Oct. de 2015
Well, sort of super late, but you just made it wrong with the brackets... This one works for me:
k=1:m;
j1=(1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k))
j2=(1/m)*sum(((theta(1)+theta(2).*X(k,2))-y(k)).*X(k,2))
theta(1)=theta(1)-alpha*(j1);
theta(2)=theta(2)-alpha*(j2);

Shekhar Raj
Shekhar Raj el 19 de Sept. de 2019
Below Code works for me -
Prediction = X * theta;
temp1 = alpha/m * sum((Prediction - y));
temp2 = alpha/m * sum((Prediction - y) .* X(:,2));
theta(1) = theta(1) - temp1;
theta(2) = theta(2) - temp2;
  2 comentarios
Jayan Joshi
Jayan Joshi el 15 de Oct. de 2019
Thank you this really helped. I tried more vectorized form of this and it worked.
predictions =X*theta;
theta=theta-(alpha/m*sum((predictions-y).*X))';
Lomg Ma
Lomg Ma el 24 de En. de 2021
How did you manage to vectorize it that much? I don't understand how to translate the formula to code, seems confusing

Iniciar sesión para comentar.


Sesha Sai Anudeep Karnam
Sesha Sai Anudeep Karnam el 7 de Ag. de 2019
Editada: Sesha Sai Anudeep Karnam el 7 de Ag. de 2019
temp0 = theta(1)-alpha*((1/m)*(theta(1)+theta(2).*X(k,2)-y(k)));
temp1 = theta(2)- alpha*((1/m)*(theta(1)+theta(2).*X(k,2)-y(k)).*X(k,2));
theta(1) = temp0;
theta(2) = temp1;
% this code gives approximate values but while submitting I'm getting 0points for this
% Theta found by gradient descent:
% -3.588389
% 1.123667
% Expected theta values (approx)
% -3.6303
% 1.1664
% How to overcome this??
  2 comentarios
Shekhar Raj
Shekhar Raj el 19 de Sept. de 2019
Below code gave the exact value -
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
Prediction = X * theta;
temp1 = alpha/m * sum((Prediction - y));
temp2 = alpha/m * sum((Prediction - y) .* X(:,2));
theta(1) = theta(1) - temp1;
theta(2) = theta(2) - temp2;
% ============================================================
Amber Hall
Amber Hall el 15 de Ag. de 2021
i've tried this code but still get error due to not enough input arguments for m = length(y) ? do you know what may be the cause as it appears i have coded correctly

Iniciar sesión para comentar.


ICHEN WU
ICHEN WU el 8 de Nov. de 2015
Can you tell me why my answer is not correct? I felt they are the same.
theta(1)=theta(1)-(alpha/m)*sum( (X*theta)-y);
theta(2)=theta(2)-(alpha/m)*sum( ((X*theta)-y)'*X(:,2));
  5 comentarios
pavan B
pavan B el 20 de Feb. de 2017
above one works perfect .try below code of mine too
earlier i used h = X * theta; a0 = (1/m)*sum((h-y)); a1 = (1/m)*sum((h-y)'*x1); surprisingly it didn't work
working code: x1 = X(:,2); a0 = (1/m)*sum((X * theta-y)); a1 = (1/m)*sum((X * theta-y)'*x1); a = [a0;a1]; theta = theta- (alpha*a);
if anyone find out whats wrong with my earlier code it would be appreciated.
Leon Cai
Leon Cai el 6 de Abr. de 2017
yea I tried h = X*theta and it didn't work too, I'm thinking that when we use the variable h, as we update theta, the value of h will remain unchanged.

Iniciar sesión para comentar.


Ali Dezfooli
Ali Dezfooli el 17 de Jun. de 2016
In this line
X = [ones(m, 1), data(:,1)];
You add bias to your X, but in the formula of your picture (Ng's slides) when you want to compute theta(2) you should remove it.

Utkarsh Anand
Utkarsh Anand el 17 de Mzo. de 2018
Looking at the problem, I also think that you cannot initiate Theta as Zero.

Rajeswari G
Rajeswari G el 2 de En. de 2021
error = (X * theta) - y;
theta = theta - ((alpha/m) * X'*error);
In this equation why we take x'?
  1 comentario
Bee Ling TAN
Bee Ling TAN el 15 de Ag. de 2021
This is because X is a 97x2 matrix. To perform dot products, only X' (2x97)will make the answer valid to be 2x1 vectors, entrys are theta(1)&theta(2) respectively.

Iniciar sesión para comentar.


Wamin Thammanusati
Wamin Thammanusati el 21 de Feb. de 2021
Editada: Wamin Thammanusati el 21 de Feb. de 2021
The code below works for this case (one variable) and also multiple variables -
for iter = 1:num_iters
Hypothesis = X * theta;
for i=1:size(X,2)
theta(i) = theta(i) - alpha/m * sum((Hypothesis-y) .* X(:,i));
end
end
  1 comentario
Amber Hall
Amber Hall el 15 de Ag. de 2021
having tried the same code i am struggling to understand what i am doing wrong - i receive error due to not enough jnput arguments for m = length(y) line. do you have any ideas?

Iniciar sesión para comentar.


Chong Lu
Chong Lu el 16 de Nov. de 2021
Editada: Walter Roberson el 27 de Nov. de 2021
temp1 = theta(1) - alpha*(sum(X*theta - y)/m);
temp2 = theta(2) - alpha*(sum((X*theta - y).*X(:,2))/m);
theta(1) = temp1;
theta(2) = temp2;

muhammad zohaib
muhammad zohaib el 27 de Nov. de 2021

Categorías

Más información sobre Logical en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by