Find real solution of system of algebraic equations (solved in Maple, but can't do it in Matlab)
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Dear Matlab community,
I have solved a system of algebraic equations in Maple and would now like to solve the exact same system in Matlab. I thought this would be quite easy, but turns out I am wrong. Matlab returns an imaginary solution to the system while Maple finds the real one.
To write the script in Matlab I copied the code straight from Maple and then replaced Maple specific commands with Matlab specific commands. The code is attached in a file and you will also find it below. Could anyone urgently help me with finding the real solution in Matlab? Thank you!
The solutions to the system should be
- Pct_Al2O3_i = 55.6042 ...
- Pct_Al_i = 0.1792 ...
- Pct_SiO2 = 0.04636 ...
- Pct_Si_i = 0.09427 ...
clc; clear;
% Initialisation parameters & variables
Pct_Al_i = sym('Pct_Al_i');
Pct_Si_i = sym('Pct_Si_i');
Pct_Al2O3_i = sym('Pct_Al2O3_i');
Pct_SiO2_i = sym('Pct_SiO2_i');
A_int=0.025^2*pi;
T_proc=1600;
Rho_m=7000*10^3;
Rho_s=2850*10^3;
W_m=500;
W_s=75;
m_Al=3*10^(-4);
m_Si=3*10^(-4);
m_SiO2=3*10^(-5);
m_Al2O3=3*10^(-5);
Pct_Al_b=0.3;
Pct_Si_b=0;
Pct_SiO2_b=5;
Pct_Al2O3_b=50;
Pct_Al_beq=0.132;
Pct_Si_beq=0.131;
Pct_SiO2_beq=3.13;
Pct_Al2O3_beq=52.12;
AW_Al=26.9815385;
AW_Si=28.085;
AW_O=15.999;
AW_Mg=24.305;
AW_Ca=40.078;
AW_Fe=55.845;
MW_SiO2=AW_Si+2*AW_O;
MW_Al2O3=2*AW_Al+3*AW_O;
MW_MgO=AW_Mg+AW_O;
MW_CaO=AW_Ca+AW_O;
R_cst=8.3144621;
% Mass balance equations
Mass_eq1=0==(Pct_Al_b-Pct_Al_i)+4*AW_Al*m_Si/(3*AW_Si*m_Al)*(Pct_Si_b-Pct_Si_i);
Mass_eq2=0==(Pct_Al_b-Pct_Al_i)-4*Rho_s*m_SiO2*AW_Al/(3*Rho_m*m_Al*MW_SiO2)*(Pct_SiO2_b-Pct_SiO2_i);
Mass_eq3=0==(Pct_Al_b-Pct_Al_i)+2*Rho_s*m_Al2O3*AW_Al/(Rho_m*m_Al*MW_Al2O3)*(Pct_Al2O3_b-Pct_Al2O3_i);
% Equilibrium equation
delta_G0=-720680+133*T_proc;
x_SiO2_i=(Pct_SiO2_i/(100*MW_SiO2))/(Pct_Al2O3_i/(100*MW_Al2O3) + Pct_SiO2_i/(100*MW_SiO2) + (100-Pct_SiO2_i-Pct_Al2O3_i)/(100*MW_CaO));
e_AlonSi=0.058;
e_AlonAl=0.045;
e_SionSi=0.11;
e_SionAl=0.0056;
Gamma_Al_Hry=1;
Gamma_Si_Hry=1;
Gamma_SiO2_Ra=0.01;
ln_h_Al=log(Gamma_Al_Hry)+log(10)*e_SionAl*Pct_Si_i/100+log(Pct_Al_i/100);
ln_h_Si=log(Gamma_Si_Hry)+log(10)*e_AlonSi*Pct_Al_i/100+log(Pct_Si_i/100);
ln_a_Al2O3=log(0.30);
ln_a_SiO2=log(Gamma_SiO2_Ra*x_SiO2_i);
K_cst=-delta_G0/(R_cst*T_proc);
Equil_eq=K_cst==3*ln_h_Si+2*ln_a_Al2O3-4*ln_h_Al-3*ln_a_SiO2;
% Solving
S = solve([Mass_eq1, Mass_eq2, Mass_eq3, Equil_eq], [Pct_Al_i, ...
Pct_Si_i, Pct_SiO2_i, Pct_Al2O3_i]);
2 comentarios
Geoff Hayes
el 12 de Abr. de 2015
Mattias - why not step through the code (using the debugger) and see at which line it deviates from the solution that Maple produces? i.e. if you run both pieces of code side-by-side then at some point the variables will start to differ.
Respuestas (1)
Philip Caplan
el 14 de Abr. de 2015
In order to get a real solution to your system of equations, you need to tell MATLAB to assume your variables are real. You can do this by passing the 'real' option to "sym":
% Initialisation parameters & variables
Pct_Al_i = sym('Pct_Al_i','real');
Pct_Si_i = sym('Pct_Si_i','real');
Pct_Al2O3_i = sym('Pct_Al2O3_i','real');
Pct_SiO2_i = sym('Pct_SiO2_i','real');
I get the correct solution you mentioned when using this modification. For more information about assumptions on symbolic variables, please refer to
0 comentarios
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!