How best to overlay bar graphs from histcounts of different data?
17 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I wish to overlay bar graphs from two different samples that use histcounts. The length of the separate counts are not equal nor neccessarily is their bin sizes. I am using the Freedman-Diaconis bin method to ensure the best bin sizing automatically. Ultiamtely I want to best visualize the different data by color and having all the bars of the same width--and importantly in an interlaced (or side by side) fashion. I am not sure if this is possible and cannot get around doing this. I should add, I am centering the bins between the bin edges for the data and adjusted the bars to have the same width. Here's an example:
figure;
[v1, e1] = histcounts([2 5 3.4 5.3 5 4 8 7],'BinMethod','fd');
de = diff(e1)/2; % difference btwn bins
wcl1 = e1(1:end-1) + de; % bin center location
b1 = bar(wcl1,v1,0.25);
hold on;
[v2, e2] = histcounts([3.4 5.5 6.4 6.9 7],'BinMethod','fd');
de = diff(e2)/2;
wcl2 = e2(1:end-1) + de;
b2 = bar(wcl2,v2,0.25);
hold off
As it turned out the centered bin locations are identical for both data set and this visualization gives the false impression any one bar are is highlighting a breakdown of composing parts. How best to deal with such a case? Can I get the bar function to have the blue and red bars of say at column 5 side by side? In centering between the bin edges, I believe this is the best approach but I am open to any suggestion for best visualizing. Thank you in advance for any help or suggestions.
0 comentarios
Respuesta aceptada
Matt J
el 9 de Jun. de 2023
A solution with interlacing:
[v1, e1] = histcounts([2 5 3.4 5.3 5 4 8 7],linspace(3,6,4));
[v2, e2] = histcounts([3.4 5.5 6.4 6.9 7],'BinMethod','fd');
fcn=@(z)conv(z,[1,1]/2,'valid');
e1=fcn(e1);
e2=fcn(e2);
E=unique([e1,e2]);
V1=interp1(e1,v1,E);
V2=interp1(e2,v2,E);
bar(E,[V1;V2])
xticks(E)
Más respuestas (2)
Matt J
el 9 de Jun. de 2023
Editada: Matt J
el 9 de Jun. de 2023
Maybe make the bars semi-transparent? You can also play with the edge thicknesses to emphasize the area of inclusivity of the bars.
[v1, e1] = histcounts([2 5 3.4 5.3 5 4 8 7],'BinMethod','fd');
[v2, e2] = histcounts([3.4 5.5 6.4 6.9 7],'BinMethod','fd');
fcn=@(z)conv(z,[1,1]/2,'valid');
b1 = bar(fcn(e1),v1,'w','FaceAlpha',0.5,'LineWidth',2,'EdgeColor','r'); hold on;
b2 = bar(fcn(e2),v2,'b','FaceAlpha',0.5,'EdgeColor','none'); hold off;
Ver también
Categorías
Más información sobre Data Distribution Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!