My dataset consists of 322 samples in four categories, with the last column being labeled,Please help me take a look at my code and why the accuracy is very low?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
wentong
el 15 de Jun. de 2023
Comentada: Ranjeet
el 30 de Jun. de 2023
%% 读取数据
dataset=readmatrix('borsmote_data.xlsx');
sz = size(dataset);
dataset = dataset(randperm(sz(1)),:);
traindata=dataset(:,1:7);
trainlabel=categorical(dataset(:,8));
classes = unique(trainlabel)
numClasses = numel(unique(trainlabel))
%% 划分训练集和数据集
PD = 0.8 ;
Ptrain = []; Ttrain = [];
Ptest = []; Ttest = [];
for i = 1 : length(classes)
indi = find(trainlabel==classes(i));
indi = indi(randperm(length(indi)));
indj = round(length(indi)*PD);
Ptrain = [Ptrain; traindata(indi(1:indj),:)]; Ttrain = [Ttrain; trainlabel(indi(1:indj),:)];
Ptest = [Ptest; traindata(indi(1+indj:end),:)]; Ttest = [Ttest; trainlabel(indi(1+indj:end),:)];
end
Ptrain=(reshape(Ptrain', [7,1,1,size(Ptrain,1)]));
Ptest=(reshape(Ptest', [7,1,1,size(Ptest,1)]));
layers = [imageInputLayer([7 1 1])%输入层
convolution2dLayer([3 1],10,'Stride',1)
batchNormalizationLayer%批归一化
reluLayer%激活
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])%池化层
dropoutLayer
fullyConnectedLayer(numClasses)%全连接层输出大小
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',5000, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{Ptest,Ttest},...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
net = trainNetwork(Ptrain,Ttrain,layers,options);
Respuesta aceptada
Ranjeet
el 26 de Jun. de 2023
Hi Wentong,
As per the dataset/information provided, there are only 322 samples collectively for all the classes.
The dataset size seems to be quite small to get a good accuracy from a NN. I see that the number of epochs is set to 5000, but the primary reason for low accuracy seems the small dataset size.
It is suggested to get more data samples, there is no upper limit but training with 5000 data samples should show better accuracy.
Also, try maintaining a balanced dataset (equivalent size of data of each class).
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!