Least Squares with constraint on absolute value

4 visualizaciones (últimos 30 días)
L
L el 15 de Jun. de 2023
Comentada: L el 19 de Jun. de 2023
Hi , I need to solve a least squares values of the form
, where x is a 32x1 vector and B is a 32x32 matrix.
Howerver, x is complex and I need to constraint the solutions to make each element of vector x to have absolute value of 1.
Is that possible?
Best,

Respuesta aceptada

Torsten
Torsten el 16 de Jun. de 2023
Editada: Torsten el 16 de Jun. de 2023
rng("default")
n = 32;
y = rand(n,1) + 1i*rand(n,1);
B = rand(n) + 1i*rand(n);
x0 = rand(n,1) + 1i*rand(n,1);
x0 = [real(x0);imag(x0)];
x0 = x0./[sqrt(x0(1:n).^2+x0(n+1:2*n).^2);sqrt(x0(1:n).^2+x0(n+1:2*n).^2)];
fun = @(x)(B*(x(1:n)+1i*x(n+1:2*n))-y)'*(B*(x(1:n)+1i*x(n+1:2*n))-y);
fun(x0)
ans = 1.2661e+04
nonlcon = @(x)deal([],x(1:n).^2+x(n+1:2*n).^2-ones(n,1));
sol = fmincon(fun,x0,[],[],[],[],[],[],nonlcon,optimset('MaxFunEvals',10000,'TolFun',1e-12,'TolX',1e-12))
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
sol = 64×1
0.6418 -0.9517 -0.9328 -0.8359 -0.9372 0.4603 0.7496 0.8249 0.9990 -0.2242
fun(sol)
ans = 10.3184
sol(1:n).^2+sol(n+1:2*n).^2-ones(n,1)
ans = 32×1
1.0e-15 * 0 0 -0.2220 0 0 0 0 0 0 0

Más respuestas (1)

Matt J
Matt J el 15 de Jun. de 2023
Editada: Matt J el 15 de Jun. de 2023
You'll need to write the problem in terms of the real-valued components xi and xr of x,
x=xr+1i*xi
Once you do that, your absolute value constraints become quadratic,
xr^2+xi^2=1
and you can solve with fmincon.
  2 comentarios
L
L el 16 de Jun. de 2023
Editada: L el 16 de Jun. de 2023
Than
ks for your answer.
Is this correct?
n = @(x) vecnorm( y - B*x);
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @unity;
x0 = zeros(32,1);
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
function [c,ceq] = unity(x)
c = real(x)^2 + 1*iimg(x)^2 - 1;
ceq = [];
end

Iniciar sesión para comentar.

Categorías

Más información sobre Quadratic Programming and Cone Programming en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by