Roots of an equation when two parameters are changed

1 visualización (últimos 30 días)
Fares
Fares el 19 de Jun. de 2023
Comentada: Fares el 22 de Jun. de 2023
I have this equation
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
b=0.8;
zeta=0.075;
omega0=0.001
syms M sigma eta Msol positive
Nut(M) = mu+(rho*M/(1+M));
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M)));
lam(M) = 1/(1+Nut(M));
P(M) = epsilon*M/(1+M);
eqn = (q./b).*gro(M).*(eta+P(M)).*(1+Nut(M)).*(1-(((alpha.*sigma.*q.*(eta+P(M)).*(1+Nut(M))+b.*(q+alpha).*(zeta.*M-omega0)))./(b.*alpha.*sigma.*K)))-(q./sigma).*(zeta.*M-omega0)==0;
I can compute the roots of this equation when sigma is varied and eta = 0.05 using the command
[num,den]=numden(lhs(eqn));
sigma_num = linspace(0.01,1,20);
for u = 1:numel(sigma_num)
Msol(u) = vpa(solve(subs(num,sigma,sigma_num(u))));
end
which will produce 20 roots, each one is related to each value of sigma. Now, I would like to compute the roots of the equation when two parameters are varied, say sigma and eta such that eta_num = linspace(0.01,1,20) as well. I believe I should end up having 400 roots but How I can do that? Any help is appreciated! Many thanks!

Respuesta aceptada

Torsten
Torsten el 19 de Jun. de 2023
Editada: Torsten el 19 de Jun. de 2023
"num" is a polynomial of degree 7 in M. Thus it has seven roots. But your code only gives one of these seven. So I hope you get the single root out of seven that you are after.
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
b=0.8;
zeta=0.075;
omega0=0.001;
syms M sigma eta Msol positive
Nut(M) = mu+(rho*M/(1+M));
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M)));
lam(M) = 1/(1+Nut(M));
P(M) = epsilon*M/(1+M);
eqn = (q./b).*gro(M).*(eta+P(M)).*(1+Nut(M)).*(1-(((alpha.*sigma.*q.*(eta+P(M)).*(1+Nut(M))+b.*(q+alpha).*(zeta.*M-omega0)))./(b.*alpha.*sigma.*K)))-(q./sigma).*(zeta.*M-omega0)==0;
[num,den]=numden(lhs(eqn));
sigma_num = linspace(0.01,1,20);
eta_num = linspace(0.01,1,20);
n = numel(eta_num);
m = numel(sigma_num);
M_num = zeros(n,m);
%M_num = cell(n,m);
for i = 1:n
for j = 1:m
M_num(i,j) = vpa(solve(subs(num,[eta sigma],[eta_num(i),sigma_num(j)])==0,M));
%M_num{i,j} = roots(sym2poly(subs(num,[eta sigma],[eta_num(i),sigma_num(j)])));
end
end
M_num
M_num = 20×20
0.0135 0.0146 0.0157 0.0168 0.0180 0.0193 0.0206 0.0219 0.0233 0.0248 0.0263 0.0279 0.0296 0.0314 0.0333 0.0352 0.0373 0.0395 0.0418 0.0442 0.0143 0.0194 0.0247 0.0302 0.0360 0.0420 0.0482 0.0547 0.0615 0.0686 0.0760 0.0837 0.0918 0.1002 0.1090 0.1181 0.1276 0.1376 0.1479 0.1587 0.0150 0.0240 0.0333 0.0431 0.0532 0.0638 0.0748 0.0862 0.0982 0.1106 0.1235 0.1369 0.1509 0.1654 0.1804 0.1959 0.2120 0.2286 0.2458 0.2635 0.0157 0.0284 0.0416 0.0554 0.0697 0.0847 0.1003 0.1164 0.1332 0.1507 0.1687 0.1874 0.2068 0.2268 0.2474 0.2687 0.2905 0.3130 0.3360 0.3597 0.0164 0.0326 0.0495 0.0672 0.0856 0.1047 0.1246 0.1452 0.1666 0.1887 0.2116 0.2352 0.2595 0.2845 0.3102 0.3366 0.3636 0.3912 0.4194 0.4481 0.0170 0.0366 0.0571 0.0785 0.1007 0.1238 0.1478 0.1727 0.1983 0.2249 0.2522 0.2803 0.3091 0.3387 0.3690 0.4000 0.4315 0.4637 0.4965 0.5297 0.0176 0.0405 0.0644 0.0893 0.1152 0.1421 0.1699 0.1987 0.2284 0.2590 0.2905 0.3227 0.3558 0.3895 0.4240 0.4591 0.4948 0.5311 0.5679 0.6053 0.0182 0.0442 0.0713 0.0996 0.1289 0.1594 0.1909 0.2234 0.2569 0.2913 0.3266 0.3627 0.3995 0.4371 0.4754 0.5142 0.5537 0.5937 0.6342 0.6752 0.0187 0.0477 0.0779 0.1094 0.1420 0.1759 0.2108 0.2468 0.2838 0.3217 0.3605 0.4001 0.4405 0.4816 0.5233 0.5656 0.6085 0.6519 0.6958 0.7401 0.0193 0.0510 0.0842 0.1187 0.1545 0.1915 0.2296 0.2689 0.3091 0.3503 0.3924 0.4353 0.4789 0.5232 0.5681 0.6135 0.6595 0.7060 0.7529 0.8002

Más respuestas (0)

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by