Can someone help me to correct the code ​​for this problem using Crank-Nicolson finite difference implicit method?

4 visualizaciones (últimos 30 días)
Question is:
Governing equations:
Boundary conditions:
The Crank-Nicolson finite difference implicit method is used to solve the above equations:
As tried here, I want to plot graphs for velocity profile using parameters like Pe, beta, and N.
This trial code generates plain plot without errors.
Can anyone help me solve this problem?
Trial code
% Trialcodecranknicolson analytical code
function vj_crank
clear all;
clc;
mr=41; mz=41; mt=1000; Pe=10; Kr=1; Sc=1; lambda=1; gamma=pi/8;
tp=600; ttp=500; tttp=100; Gr=1; Gc=1; S=1; Re=1; M=0.5; t=0.1; w=pi; N=1; Da=0.5; beta=1;
dely=0.05;
g=exp(1.i*w*t);
Peva=[1 2 3 4];
for iiii=1:4
Pe=Peva(iiii);
X=linspace(-1,1,mr+1);
V=zeros(mr,mt);
T=zeros(mr,mt);
C=zeros(mr,mt);
%Initial Conditions
for i=1:mr+1
for j=1:mt+1
for k=1:mz+1
V(i,1)=0;
T(i,1)=1;
C(i,1)=1;
end
end
end
for i=1:mr+1
for j=1:mt+1
for k=1:mz+1
V(1,j)=0;
T(1,j)=0;
C(1,j)=0;
end
end
end
% Boundary Conditions
for i=1:mr+1
for j=1:mt+1
for k=1:mz+1
V(mr+1,j)=0;
T(mr+1,j)=0;
C(mr+1,j)=0;
end
end
end
for j=1:mt
for k=2:mz
for i=2:mr
V(i,j+1)=(1/1+beta*1.i*w)*((V(i-1,j)-(2*(V(i,j)))+V(i+1,j)+V(i-1,j+1)-(2*(V(i,j+1)))+V(i+1,j+1))/(2*(dely)^2))+(Re*S)*((V(i+1,j)-V(i,j))/(dely))-(lambda)+(Gr*sin(gamma))*((T(i,j+1)+T(i,j))/(2))+(Gc*sin(gamma))*((C(i,j+1)+C(i,j))/(2))-((Da+M-(Re*1.i*w))*((T(i,j+1)+T(i,j))/(2)));
T(i,j+1)=((T(i-1,j)-(2*(T(i,j)))+T(i+1,j)+T(i-1,j+1)-(2*(T(i,j+1)))+T(i+1,j+1))/(2*(dely)^2))+S*((T(i+1,j)-T(i,j))/(dely))+((N-(Pe*1.i*w))*((T(i,j+1)-T(i,j))/2));
C(i,j+1)=(Sc)*((C(i-1,j)-(2*(C(i,j)))+C(i+1,j)+C(i-1,j+1)-(2*(C(i,j+1)))+C(i+1,j+1))/(2*(dely)^2))+S*((C(i+1,j)-C(i,j))/(dely))-((Kr+1.i*w)*((C(i,j+1)-C(i,j))/2));
end
end
end
figure (1)
hold on
grid off
plot(X,V(:,tp)*g,'-','linewidth',2);
hold off
end
  5 comentarios
Torsten
Torsten el 30 de Jun. de 2023
Can I use Crank Nicholson method to solve the below equations?
Maybe, but I have no idea how to discretize and solve the equation for u together with the third-order term.
You have a fourth equation for p ?

Iniciar sesión para comentar.

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by