Implement the "total variation distance" (TVD) in Matlab

39 visualizaciones (últimos 30 días)
Sim
Sim el 3 de Jul. de 2023
Editada: Bruno Luong el 4 de Ag. de 2023
I am trying to implement the Total variation distance of probability measures (TVD) in Matlab.
Would it be correct to use the max function, in order to calculate the "supremum" of the TVD equation (here below)?
My attempt:
% Input
A =[ 0.444643925792938 0.258402203856749
0.224416517055655 0.309641873278237
0.0730101735487732 0.148209366391185
0.0825852782764812 0.0848484848484849
0.0867743865948534 0.0727272727272727
0.0550568521843208 0.0440771349862259
0.00718132854578097 0.0121212121212121
0.00418910831837223 0.0336088154269972
0.00478755236385398 0.0269972451790634
0.00359066427289048 0.00110192837465565
0.00538599640933573 0.00220385674931129
0.000598444045481747 0
0.00299222022740874 0.00165289256198347
0 0
0.00119688809096349 0.000550964187327824
0 0.000550964187327824
0.00119688809096349 0.000550964187327824
0 0.000550964187327824
0 0.000550964187327824
0.000598444045481747 0
0.000598444045481747 0
0 0
0 0.000550964187327824
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.000550964187327824
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0.00119688809096349 0.000550964187327824];
P = A(:,1);
Q = A(:,2);
% Total variation distance (of probability measures)
d = max(abs(P-Q))
d = 0.1862

Respuesta aceptada

Bruno Luong
Bruno Luong el 4 de Ag. de 2023
Editada: Bruno Luong el 4 de Ag. de 2023
Supremum is very often implemented by max, since one can only list or compute a finite set on computer.
However your formula d = max(abs(P-Q)) is not correct to compute TVD.
According to this wiki page; correct formula is given bellow "When Ω is countable"
d = 0.5 * norm(P-Q,1)
or
d = 0.5 * sum(abs(P-Q));
  8 comentarios
Bruno Luong
Bruno Luong el 4 de Ag. de 2023
Editada: Bruno Luong el 4 de Ag. de 2023
Don't use the brute force implementation of the initial definition for any discrete pdf with more than 20 values (n = cardinal of Omega), rather use
dFormula = 0.5 * norm(P-Q,1)
The for-loop I made is just to illustrate the correctness of the formula. Just like no-one would computes the determinant of matrix 30 x 30 using Leibniz formula.
Sim
Sim el 4 de Ag. de 2023
Ah ok..great..!! Many many thanks!
Then, I will use:
dFormula = 0.5 * norm(P-Q,1)

Iniciar sesión para comentar.

Más respuestas (1)

Debadipto
Debadipto el 4 de Ag. de 2023
Hi Sim,
Upon searching, I found the exact question being asked on stackoverflow (I'm assuming it was posted by you only), where somebody has already answered the question. I am attaching the link to that answer for future reference:

Categorías

Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by