try to find hessian matrix

29 visualizaciones (últimos 30 días)
Taniya
Taniya el 13 de Jul. de 2023
Editada: Torsten el 13 de Jul. de 2023
f(k) = n*ln(k)-n*ln(1/n*sum(i=1 to n)xi^k+(k-1)sum of (1to n)ln(xi))-n
  3 comentarios
Taniya
Taniya el 13 de Jul. de 2023
i could not write the code for the sum series where x sum for 1 to n
Dyuman Joshi
Dyuman Joshi el 13 de Jul. de 2023
The expression you have written above is not clear. Please format it properly.

Iniciar sesión para comentar.

Respuesta aceptada

Rahul
Rahul el 13 de Jul. de 2023
Hi Taniya,
Assuming you have k, n and xi, you can try the following code to find the Hessian Matrix:
f = n*log(k) - n*log(1/n * sum(xi^k, i, 1, n) + (k-1) * sum(log(xi), i, 1, n)) - n;
% Calculate the second partial derivatives
d2f_dk2 = diff(f, k, 2);
d2f_dxi_dk = diff(f, k, xi);
d2f_dk_dxi = diff(f, xi, k);
d2f_dxi2 = diff(f, xi, 2);
% Create the Hessian matrix
H = [d2f_dk2, d2f_dxi_dk; d2f_dk_dxi, d2f_dxi2];
Hope this helps.
Thanks.

Más respuestas (1)

Torsten
Torsten el 13 de Jul. de 2023
Editada: Torsten el 13 de Jul. de 2023
The vector of independent variables is (x1,x2,...,xn):
syms i k
n = 3;
x = sym('x',[1 n])
x = 
f = n*log(k) - n*log(1/n*sum(x.^k) + (k-1)*sum(log(x))) - n
f = 
df = gradient(f,x)
df = 
d2f = hessian(f,x)
d2f = 

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by