I want to isocline induced step function

3 visualizaciones (últimos 30 días)
mks
mks el 31 de Jul. de 2023
Respondida: Sam Chak el 1 de Ag. de 2023
x'=rx(1-x/k)-axy/(1+quM)
y'=(eaxy)/(1+quM)-my
Where u=0 if x<=pi_0; u=sx/(sx+F)+w(sx-F)/(b(sx+F)M), if pi_0 <x<pi_1; u=1 if x>=pi_1
where pi_0=(wF)/(s(w+bM))
pi_1=F(w+bM)/(sw)

Respuestas (2)

Mrutyunjaya Hiremath
Mrutyunjaya Hiremath el 31 de Jul. de 2023
  • To simulate the isocline-induced step function differential equations, we can use MATLAB's ODE solver `ode45`.
  • First define the system of differential equations as a function and then solve it numerically.
  • 1. Define the system of differential equations:
function dydt = isocline_system(t, y, r, k, a, e, m, F, s, w, b, M, sx)
x = y(1);
u = isocline_input(x, F, s, w, b, M, sx);
dxdt = r * x * (1 - x / k) - a * x * y / (1 + q(u) * u * M);
dydt = (e * a * x * y) / (1 + q(u) * u * M) - m * y;
dydt = [dxdt; dydt];
end
function u = isocline_input(x, F, s, w, b, M, sx)
pi0 = (w * F) / (s * (w + b * M));
pi1 = F * (w + b * M) / (s * w);
if x <= pi0
u = 0;
elseif x >= pi1
u = 1;
else
u = sx / (sx + F) + w * (sx - F) / (b * (sx + F) * M);
end
end
function q_u = q(u)
q_u = 1 / (1 - u);
end
  • 2. Solve the differential equations numerically using `ode45`:
% Parameters
r = ...; % Define the value of r
k = ...; % Define the value of k
a = ...; % Define the value of a
e = ...; % Define the value of e
m = ...; % Define the value of m
F = ...; % Define the value of F
s = ...; % Define the value of s
w = ...; % Define the value of w
b = ...; % Define the value of b
M = ...; % Define the value of M
sx = ...; % Define the value of sx
% Initial conditions
x0 = ...; % Define the initial value of x
y0 = ...; % Define the initial value of y
initial_conditions = [x0; y0];
% Time span for simulation
tspan = ...; % Define the time span (e.g., [0, 10])
% Solve the system of differential equations
[t, y] = ode45(@(t, y) isocline_system(t, y, r, k, a, e, m, F, s, w, b, M, sx), tspan, initial_conditions);
% Extract the solution
x_sol = y(:, 1);
y_sol = y(:, 2);
  • Replace the `...` with the specific values of the parameters and initial conditions you want to use in your simulation. The `ode45` solver will numerically integrate the system of differential equations over the given time span `tspan`, and the solutions for `x` and `y` will be stored in `x_sol` and `y_sol`, respectively.
  1 comentario
mks
mks el 1 de Ag. de 2023
% Parameters
r =0.1; % Define the value of r
k = 50; % Define the value of k
a =0.01; % Define the value of a
e = 0.5; % Define the value of e
m = 0.05; % Define the value of m
F = 1; % Define the value of F
%s =0.1; % Define the value of s
w = 0.1; % Define the value of w
b = 0.001; % Define the value of b
M = 50; % Define the value of M
s =0.1; % Define the value of sx
% Initial conditions
x0 =2; % Define the initial value of x
y0 =1; % Define the initial value of y
initial_conditions = [x0; y0];
% Time span for simulation
tspan = [0, 100]; % Define the time span (e.g., [0, 10])
% Solve the system of differential equations
[t, y] = ode45(@(t, y) kkk(t, y, r, k, a, e, m, F, s, w, b, M, x), tspan, initial_conditions);
% Extract the solution
x_sol = y(:, 1);
y_sol = y(:, 2);
function dydt = kkk(t,x,y, r, k, a, e, m, F, s, w, b, M)
x = y(1);
u = isocline_input(x, F, s, w, b, M);
dxdt = r * x * (1 - x / k) - a * x * y / (1 + q * u * M);
dydt = (e * a * x * y) / (1 + q * u * M) - m * y;
dydt = [dxdt; dydt];
end
function u = isocline_input(x, F,w, b, M, s)
pi0 = (w * F) / (s * (w + b * M));
pi1 = F * (w + b * M) / (s * w);
if x <= pi0
u = 0;
elseif x >= pi1
u = 1;
else
u = (s*x) / (s*x + F) + w * (s*x - F) / (b * (s*x + F) * M);
end
end
I want to plot (x,y) where is my fault please help

Iniciar sesión para comentar.


Sam Chak
Sam Chak el 1 de Ag. de 2023
The above code seems to be generated by ChatGPT and it has flaws. You shouldn't directly use or blindly trust someone who simply gave you an untested code without showing how it work.
ic = [2; 1]; % initial values
tspan = [0 100]; % sim time
[t, z] = ode45(@odefcn, tspan, ic);
x = z(:, 1);
y = z(:, 2);
subplot(2,1,1)
plot(t, x), grid on, title('x(t)'), xlabel('t')
subplot(2,1,2)
plot(t, y), grid on, title('y(t)'), xlabel('t')
function dzdt = odefcn(t, z)
% parameters
r = 0.1;
k = 50;
a = 0.01;
q = 0.03; % <--- change this value
M = 50;
e = 0.5;
m = 0.05;
w = 0.1;
F = 1.613; % <--- change this value
s = 0.1;
b = 0.001;
x = z(1);
y = z(2);
% system input
pi0 = (w*F)/(s*(w + b*M));
pi1 = F*(w + b*M)/(s*w);
if x <= pi0
u = 0;
elseif x >= pi1
u = 1;
else
u = (s*x)/(s*x + F) + w*(s*x - F)/(b*(s*x + F)*M);
end
% dynamics
dxdt = r*x*(1 - x/k) - (a*x*y)/(1 + q*u*M);
dydt = (e*a*x*y)/(1 + q*u*M) - m*y;
dzdt = [dxdt;
dydt];
end

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by