Value for Function with 2nd order Central difference scheme
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
VIKASH
el 12 de Ag. de 2023
Respondida: Anu
el 30 de Sept. de 2023

I am trying to write code for the above problem but getting wrong answer, Kindly help me to find the error in the code or suggest if there is any better alternate way to write code for the problem.
Right answer is 2.3563
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) exp(x)-exp(-x)/2;
dFun=@(x) 2*exp(x)+2*exp(-x)/2;
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
0 comentarios
Respuesta aceptada
Star Strider
el 12 de Ag. de 2023
See First and Second Order Central Difference and add enclosing parentheses to the numerator of your implementation of the cosh function.
2 comentarios
Anu
el 30 de Sept. de 2023
c = 1.5;
h = 0.1;
x = (c - h):h:(c + h);
Fun = @(x) (exp(x) - exp(-x)) / 2;
F = Fun(x);
n = length(x);
dx = (F(3) - F(1)) / (2 * h); % Corrected calculation of derivative at x=c
Más respuestas (1)
Anu
el 30 de Sept. de 2023
- c is the central point.
- h is the step size.
- x is a vector of values around c.
- Fun is the function you want to calculate the derivative for.
- F is the function values at the points in x.
- dx calculates the derivative at the central point c using finite differences.
0 comentarios
Ver también
Categorías
Más información sobre Matrix Computations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!