computational complexity of svds
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Could anyone give me some help on why MATLAB implement svds use Lanczos Bidiagonalization algorithms but not seemingly more computational efficient algorithm like randomized algorithm, like algorithms in the paper FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS?
1 comentario
Respuestas (2)
John D'Errico
el 26 de Ag. de 2023
Editada: John D'Errico
el 26 de Ag. de 2023
Sorry, but no, we can't tell you why a choice was made. MathWorks does not give out that information.
You MIGHT be able to learn something if you make a technical support request, DIRECTLY to the tech support link. That is not Answers.
Or, you could write your own code, if you think that scheme is so much better. Nothing stops you from doing so.
0 comentarios
Christine Tobler
el 28 de Ag. de 2023
Editada: Christine Tobler
el 28 de Ag. de 2023
There is a recent function (introduced R2020b) called svdsketch, which is using randomized linear algebra. We recommend this for finding a low-rank approximation of a matrix, but not for finding individual singular value triplet, as it is focused on the whole matrix approximation, not on the residual of an individual triplet. It also doesn't allow for computing the smallest singular values, or singular values close to a shift, as svds does.
0 comentarios
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!