Finding Imaginary roots of a function

15 visualizaciones (últimos 30 días)
University
University el 27 de Sept. de 2023
Comentada: University el 28 de Sept. de 2023
Hi,
I have been trying to find a roots roots of a function. I received an error: Error using fsolve Objective function is returning undefined values at initial point. FSOLVE cannot continue.
Please can help out? I have attached my m files.
clearvars
close all
% set parameter values
pars.gamma1=0.1093;
pars.alpha3=-0.1104e-2;
pars.K1=6e-12;
pars.d=0.2e-3;
pars.eta1=0.240e-1;
pars.chia=1.219e-6;
pars.alpha=1-pars.alpha3^2/(pars.gamma1*pars.eta1);
pars.Ha=pi*sqrt(pars.K1/pars.chia)/pars.d;
% set lists of u (field) and xi (activity) values
uvals=0:0.5:3;
xivals=-0.3:0.1:0.3;
nu=length(uvals);
nxi=length(xivals);
% initiate arrays for output
taumin=ones(nu,nxi);
wavenummin=ones(nu,nxi);
% start timer
tic
disp('Starting u and xi loops');
Starting u and xi loops
% start loop around u values
for i=1:nu
pars.H=uvals(i)*pars.Ha;
% start loop around xi value
for j=1:nxi
xi=xivals(j);
% set initial tau values for root finding, tau is a complex
% variable
tauRvals=-50:0.1:50;
tauIvals=-50:0.1:50;
%tauIvals=0.1*ones(size(tauIvals));
ntau=length(tauIvals);
% plot equation (projected onto imag line) to solve for these values of u and xi
figure(1)
y=zeros(size(tauIvals));
for ii=1:ntau
tau= tauIvals(ii);
y(ii) = (pars.H ^ 2 * sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.chia * pars.d * tau ^ (0.3e1 / 0.2e1) * sqrt(pars.eta1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) + sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.d * pars.gamma1 * sqrt(pars.eta1) * sqrt(tau) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) - 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 ^ 2 * tau + 0.2e1 * sqrt(pars.K1) * pars.alpha3 * tau ^ 2 * xi - 0.2e1 * sqrt(pars.K1) * pars.alpha3 ^ 2 * tau) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) ^ (-0.1e1 / 0.2e1) / pars.alpha3 / sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d);
end
plot(tauIvals,y);
hold on
plot(tauIvals,zeros(size(tauIvals)),'-k');
xline(0);
yline(0);
xlabel('tau');
ylabel('tau equation');
%axis([min( tauIvals) max( tauIvals) -1e-2 1e-2]);
drawnow
hold off
% loop around initial tau values for root finding
tausol=zeros(1,ntau);
flag=zeros(1,ntau);
wavenum=zeros(1,ntau);
for k=501 %1:ntau
% set function, options and inital tau value
fun = @(x)rootsolver_complex(x,xi,pars);
options = optimset('TolFun',1e-15,'MaxFunEvals',1e5,'Maxiter',1e5,'Display','none');
tauinit=[tauIvals(k),tauIvals(k)];
tauinit
fun(tauinit)
% find root of tau equation
[x,fval,exitflag,output] = fsolve(fun,tauinit,options);
% save complex tau solution
tausol(k)=complex(x(1),x(2));
% set solve flag (if exitflag>0 the root finder has solved)
flag(k)=(exitflag>0);
% calulate wavenumber (imag part of) using equation from Maple
% file
wavenum(k)=imag(sqrt((pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi - pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) / pars.K1 / pars.eta1 / tau) * pars.d / pi / 0.2e1);
end
tauflag=[tausol',flag'];
tausol_found=tauflag(flag==1);
tausolR=imag(tausol_found);
tauIvals=tauIvals(flag==1);
wavenum=wavenum(flag==1);
% plot imag part of tau solution versus initial tau
figure(2)
plot(tauIvals,tausolR,'g-')
hold on
plot(tauIvals,tauIvals,'k-')
xlabel('initial tau');
ylabel('tau solution');
hold off
% calculate min value of imag part of tau and the wavenumber at
% that min value of tau
taumin(i,j)=min(tausolR);
wavenummins=wavenum(tausolR==min(tausolR));
wavenummin(i,j)=wavenummins(1);
% filled contour plot of minimum tau value (negative tau means instability)
figure(3)
[Xi,U] = meshgrid(xivals,uvals);
N=[0:0.1:1];
map = [0.95*(1-N') 0.95*(1-N') N'];
contourf(U,Xi,taumin,[-100:10:100])
colormap(map)
colorbar
xlabel('u');
ylabel('xi');
title('minimum tau');
drawnow
% filled contour plot of minimum tau value (negative tau means instability)
figure(4)
contourf(U,Xi,wavenummin,10)
colormap(map)
colorbar
xlabel('u');
ylabel('xi');
title('wavenumber at minimum tau');
drawnow
% stability domain in (u,xi) plane
figure(5)
S = 25; % size of symbols in pixels
% normalize colouring vector to go from zero to 1
normtau = (taumin>0);
normtau=reshape(normtau,nu*nxi,1);
C = [0.95*(1-normtau) 0.95*(1-normtau) normtau];
scatter(reshape(U,nu*nxi,1),reshape(Xi,nu*nxi,1),S,C,'filled','Marker','o')
xlabel('u');
ylabel('xi');
title('Blue = stable, Yellow = unstable');
drawnow
end
% display time taken and percentage complete
toc
disp(['Progress: ' num2str(round(100*(i*(j-1)+j)/(nu*nxi))) ' % completed']);
end
tauinit = 1×2
0 0
ans = 1×2
NaN 0
Error using fsolve
Objective function is returning undefined values at initial point. FSOLVE cannot continue.
function F = rootsolver_complex(x,xi,pars)
% function to provide right-hand-side of the equation for tau
gamma1=pars.gamma1;
alpha3=pars.alpha3;
K1=pars.K1;
d=pars.d;
eta1=pars.eta1;
chia=pars.chia;
alpha=pars.alpha;
H=pars.H;
tau=complex(x(1),x(2));
% equation taken directly from Maple file eq.mw
y = (H ^ 2 * sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) * d) * chia * d * tau ^ (0.3e1 / 0.2e1) * sqrt(eta1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) + sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) * d) * d * gamma1 * sqrt(eta1) * sqrt(tau) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) - 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 ^ 2 * tau + 0.2e1 * sqrt(K1) * alpha3 * tau ^ 2 * xi - 0.2e1 * sqrt(K1) * alpha3 ^ 2 * tau) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) ^ (-0.1e1 / 0.2e1) / alpha3 / sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi - alpha3 ^ 2 + eta1 * gamma1) * d);
F=[real(y),imag(y)];
end

Respuesta aceptada

Torsten
Torsten el 27 de Sept. de 2023
Editada: Torsten el 27 de Sept. de 2023
As you can see from your code above, you choose tauinit = [0 0] for k = 501, and your function returns NaN for the real part of your function. So obviously, this is not a good initial guess.
  1 comentario
University
University el 28 de Sept. de 2023
Hi Torsen,
Thank you for pointing this out. I have changed the initial guess and is working perfectly now.

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by