A compact way to replace zeros with Inf in a matrix

11 visualizaciones (últimos 30 días)
Sim
Sim el 16 de Oct. de 2023
Editada: Sim el 23 de Oct. de 2023
Would you be so nice to suggest me a more compact way to replace zeros with Inf in the following matrix? (maybe with just one line of code?)
% Input
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
% Replace zeros with Inf
[row,col] = ind2sub(size(A),find(A==0));
for i = 1 : length(row)
A(row(i),col(i))=Inf;
end
% Output
A
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9

Respuesta aceptada

J. Alex Lee
J. Alex Lee el 16 de Oct. de 2023
Editada: J. Alex Lee el 16 de Oct. de 2023
You can implicitly index "linearly" for any arrays - it will do all the ind2sub and sub2ind in the background:
% Input
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
B = A;
% Replace zeros with Inf
[row,col] = ind2sub(size(A),find(A==0));
for i = 1 : 3
A(row(i),col(i))=Inf;
end
% Output
A
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
B(B==0) = Inf
B = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
isequal(A,B)
ans = logical
1

Más respuestas (4)

Les Beckham
Les Beckham el 16 de Oct. de 2023
Editada: Les Beckham el 16 de Oct. de 2023
If you want to retain the non-zero elements of A and replace the zeros with Inf, then this is how I would suggest that you do that.
% Input
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
A(A==0) = Inf
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
Note that your loop doesn't do this, it creates a matrix with Inf in the positions of the zeros in A and zero everywhere else. If that is really what you want then you could do that like this.
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
B = zeros(size(A));
B(A==0) = Inf
B = 5×5
Inf 0 0 0 0 0 0 0 0 0 0 Inf 0 0 0 0 0 0 0 Inf 0 0 0 0 0
  3 comentarios
Les Beckham
Les Beckham el 16 de Oct. de 2023
Editada: Les Beckham el 16 de Oct. de 2023
You are quite welcome.
If you are just getting started with Matlab, I would highly recommend that you take a couple of hours to go through the free online tutorial: Matlab Onramp
Sim
Sim el 17 de Oct. de 2023
thanks :-)

Iniciar sesión para comentar.


Matt J
Matt J el 16 de Oct. de 2023
Allso just for fun.
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
A=A+1./(A~=0)-1
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
  2 comentarios
Alexander
Alexander el 16 de Oct. de 2023
It can't be shorter. Thumbs up.
Sim
Sim el 17 de Oct. de 2023
Thumb up! :-)

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 23 de Oct. de 2023
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
A(~A) = inf
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
  2 comentarios
J. Alex Lee
J. Alex Lee el 23 de Oct. de 2023
by the way, on huge matrices this is actually faster than testing for zero.
Sim
Sim el 23 de Oct. de 2023
Editada: Sim el 23 de Oct. de 2023
@Walter Roberson Wow!! Thumb up! :-)

Iniciar sesión para comentar.


Alexander
Alexander el 16 de Oct. de 2023
Only for fun. My maybe a bit old-fashoned approach would be:
B=1./A;
B(B==Inf)=0;
C=1./B
  6 comentarios
Alexander
Alexander el 22 de Oct. de 2023
Thanks @Stephen23 for the advice and yes, there are precision errors. But I think it depends on the problem you have to solve whether these are significant or not.
Stephen23
Stephen23 el 23 de Oct. de 2023
"But I think it depends on the problem you have to solve whether these are significant or not."
I can't think of many problems where a more complex, slower, obfuscated approach with precision errors would be preferred over the simpler, clearer, much more robust approach using indexing. Can you give an example?

Iniciar sesión para comentar.

Categorías

Más información sobre Loops and Conditional Statements en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by