Finding Coefficients for the particular solution
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Tashanda Rayne
el 18 de Oct. de 2023
Comentada: Walter Roberson
el 22 de Oct. de 2023
I have this code for the homogenous portion of the equation but I need help trying to find the particular part. I am trying to avoid using any ODE functions
%Equation: y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
format long
Coefa = 1;
Coefb = 3;
Coefc = 3.25;
x0 = 0; x1 = 25; Yin = -25, Yder = 4,
B = [Yin,Yder]; N = 1000;
x = linspace(0,25,N);
y = zeros(1,N);
R = zeros(1,2);
R = SecondOderODE1(Coefa,Coefb, Coefc);
if abs(R(1)-R(2))>=1/10^6
A = [exp(R(1)*x0),exp(R(2)*x0); exp(x0*R(1))*R(1), R(2)*exp(x0*R(2))];;
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+C(2)*x(i)^R(2));
figure(1)
plot (x,y)
xlabel ('x')
ylabel('y')
grid on
end
else
A = [x0^R(1), R(1)*x0^(R(1)-1); x0^R(2), log(x0)*(x0^(R(2)-1))];
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+log(abs(x(i)))*C(2)*x(i)^R(2));
end
end
figure(1)
plot(x,y)
xlabel ('x')
ylabel('y')
grid on
0 comentarios
Respuesta aceptada
David Goodmanson
el 18 de Oct. de 2023
Editada: David Goodmanson
el 18 de Oct. de 2023
Hi Tashanda,
let u and v be 2x1 vectors with the coefficient of cos as first element, coefficient of sine as second element, and M*u = v.
M = -eye(2,2) +3*[0 1;-1 0] + 3.25*eye(2,2) % since c'= -s s'= c
v = [3;-3/2] % right hand side
u = M\v % particular solution
u =
0.8000 % .8 cos(x) + .4 sin(x)
0.4000
2 comentarios
Walter Roberson
el 18 de Oct. de 2023
This matches the main part of the symbolic solution, without the constants of integration terms needed to account for any boundary conditions.
David Goodmanson
el 18 de Oct. de 2023
Yes it is just the particular solution, as requested by the OP.
Más respuestas (1)
Walter Roberson
el 18 de Oct. de 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
sympref('abbreviateoutput', false);
sol = dsolve(eqn)
simplify(sol, 'steps', 50)
4 comentarios
Walter Roberson
el 22 de Oct. de 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
sympref('abbreviateoutput', false);
ic = [y(0) == -25, dy(0) == 4]
sol = dsolve(eqn, ic)
sol = simplify(sol, 'steps', 50)
%cross-check
subs(eqn, y, sol)
simplify(ans)
%numeric form
[eqs,vars] = reduceDifferentialOrder(eqn,y(x))
[M,F] = massMatrixForm(eqs,vars)
f = M\F
odefun = odeFunction(f,vars)
initConditions = [-25 4];
ode15s(odefun, [0 10], initConditions)
So the function stored in odefun is what you would need to to process the system numerically
odefun(x, [y(x); dy(x)])
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!