Tune PI Controller Using Reinforcement Learning

8 visualizaciones (últimos 30 días)
How is the initial value of the weight of this neural network determined? If I want to change my PI controller to a PID controller, do I just add another weight to this row that is initialGain = single([1e-3 2])?
This code is from the demo "Tune PI Controller Using Reinforcement Learning."
initialGain = single([1e-3 2]);
actorNet = [
featureInputLayer(numObs)
fullyConnectedPILayer(initialGain,'ActOutLyr')
];
actorNet = dlnetwork(actorNet);
actor = rlContinuousDeterministicActor(actorNet,obsInfo,actInfo);
Can my network be changed to look like the following:
actorNet= [
featureInputLayer(numObs)
fullyConnectedPILayer(randi([-60,60],1,3), 'Action')]
  3 comentarios
嘻嘻
嘻嘻 el 18 de Oct. de 2023
I want the weights of the network to represent the controller parameters, the input of the network to represent the error and the error integral and its first derivative, and the final output of the network to be the control instructions
嘻嘻
嘻嘻 el 18 de Oct. de 2023
I'm not really sure. What do you think of this scheme?

Iniciar sesión para comentar.

Respuesta aceptada

Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis el 23 de Oct. de 2023
I also replied to the other thread. The fullyConnectedPILayer is a custom layer provided in the example - you can open it and see how it's implemented. So you can certainly add a third weight for the D term, but you will most likely run into other issues (e.g. how to approximate the error derivative)

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by