indexing error in function code

1 visualización (últimos 30 días)
Imran
Imran el 20 de Nov. de 2023
Editada: Star Strider el 20 de Nov. de 2023
Hi,
i am using the below codes but it showing the indexing error
function H = mass(t,y,P)
ph1_l1=P.ph1_l1;
ph1_l2=P.ph1_l2;
rm=P.rm;
rs=P.rs;
Cp=P.Cp;
ohm=P.ohm;
A1=P.A1;
p1=P.p1;
Ca=P.Ca;
rf=P.rf;
B=P.B;
Io=P.Io;
Ia=P.Ia;
Ib=P.Ib;
pc1=P.pc1;
Cs=P.Cs;
niu=P.niu;
fm=P.fm;
phi_lm=P.phi_lm;
I11=P.I11;
Zeeta=P.Zeeta;
C1=P.C1;
rM=P.rM;
N=P.N;
G1=P.G1;
Rl=P.Rl;
H = zeros(12,12);
H(1,1)=1;
H(2,2)=1;
H(2,8)=ph1_l1*rm;
H(2,10)=ph1_l2*rm;
H(3,3)=1;
H(4,4)=A*rm/rs;
H(4,8)=rm/rs;
H(5,5)=1;
H(6,6)=A*rm/rs;
H(6,10)=rm/rs;
H(7,7)=1;
H(8,8)=1;
H(9,9)=1;
H(10,10)=1;
H(11,11)=Cp*ohm;
H(12,12)=Cp*ohm;
end
function dydt = fu(t,y,P)
ph1_l1=P.ph1_l1;
ph1_l2=P.ph1_l2;
rm=P.rm;
rs=P.rs;
Cp=P.Cp;
ohm=P.ohm;
A1=P.A1;
p1=P.p1;
Ca=P.Ca;
rf=P.rf;
B=P.B;
Io=P.Io;
Ia=P.Ia;
Ib=P.Ib;
pc1=P.pc1;
Cs=P.Cs;
niu=P.niu;
fm=P.fm;
phi_lm=P.phi_lm;
I11=P.I11;
Zeeta=P.Zeeta;
C1=P.C1;
rM=P.rM;
N=P.N;
G1=P.G1;
Rl=P.Rl;
dydt = [y(2)
-p1^4*y(1)-Ca*y(2)+ph1_l1*rm*rf^2*B*sin(rf*t)+ph1_l2*rm*rf.^2*B*sin(rf*t)+(rf.^2*B*sin(rf*t-rf*cos(rf*t))*Io)
y(4)
-A*y(3)*pc1^4-(Cs*pc1^4*A+Ca*A)*y(4)-Ca*y(8)*I11-y(11)*niu*(Ia-Ib)+fm*phi_lm+((rm/rs)*rf^2*B*sin(rf*t)-Ca*rf*Bcos(rf*t))*I11
y(6)
-A*y(5)*pc1^4-(Cs*pci^4*A+Ca*A)*y(6)-Ca*y(10)*I11-q(12)*niu*(Ia-Ib)+fm*phi_lm+((rm/rs)*rf^2*B*sin(rf*t)-Ca*rf*Bcos(rf*t))*I11
q(8)
f^2*ph1_l1*y(1)+Zeeta*ph1_l1*y(2)+2*C1*(rs/rM)*pc1^3*y(3)-f^2*y(7)-Zeeta*y(8)+rf^2*B*sin(rf*t)
q(10)
f^2*ph1_l2*y(1)+Zeeta*ph1_l2*y(2)+2*C1*(rs/rM)*pc1^3*y(5)-f^2*y(9)-Zeeta*y(10)+rf^2*B*sin(rf*t)
-N*G1*y(4)-y(11)/Rl
-N*G1*y(6)-y(12)/Rl];
end
P.ph1_l1=-0.012247303909990;
P.ph1_l2=0.635309628411612;
P.rm=1.509423275703383;
P.rs=1.960632785814804;
P.Cp=1.170700000000000e-07;
P.ohm=33.720923694042130;
P.A1=0.089447240667428;
P.p1=9.769092596233520;
P.Ca=0.001400000000000;
P.rf=0.5;
P.B=0.028248587570621;
P.Io=0.554857887911763;
P.Ia=-0.002864751824000;
P.Ib=0.952971893800000;
P.pc1=1.140600000000000;
P.Cs=0.010100000000000;
P.niu=9.520415341114659e-07;
P.fm=2;
P.phi_lm=0.503431090400000;
P.I11=0.2;
P.Zeeta=3.696152028525914e-04;
P.C1=0.839958085300000;
P.rM=4.241322704123775;
P.N=-0.006529965080390;
P.G1=1.363350182000000;
P.Rl=0.0002;
tspan=0:0.001:100;
y0=0;
opts = odeset('Mass',@(t,q) mass(t,q,P));
[t,q] = ode45(@(t,q) fu(t,q,P),tspan,y0,opts);
and the error that i am having
Index exceeds the number of array elements. Index must not exceed 1.
Error in fu (line 28)
dydt = [y(2)
Error in Msolve>@(t,q)fu(t,q,P) (line 30)
[t,q] = ode45(@(t,q) fu(t,q,P),tspan,y0,opts);
Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 107)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
Error in Msolve (line 30)
[t,q] = ode45(@(t,q) fu(t,q,P),tspan,y0,opts);

Respuesta aceptada

Star Strider
Star Strider el 20 de Nov. de 2023
Editada: Star Strider el 20 de Nov. de 2023
The initial subscript problem was the result of:
y0=0;
because there are 12 differential equations. There are several typographical errors that I did my best to correct, replacing ‘f’ with ‘fr’, ‘q’ with ‘y’, and ‘A’ with ‘A1’. Even with those changes and expanding ‘y0’, it will not run in the 55 seconds allowed here.
I encourage you to experiment with it —
P.ph1_l1=-0.012247303909990;
P.ph1_l2=0.635309628411612;
P.rm=1.509423275703383;
P.rs=1.960632785814804;
P.Cp=1.170700000000000e-07;
P.ohm=33.720923694042130;
P.A1=0.089447240667428;
P.p1=9.769092596233520;
P.Ca=0.001400000000000;
P.rf=0.5;
P.B=0.028248587570621;
P.Io=0.554857887911763;
P.Ia=-0.002864751824000;
P.Ib=0.952971893800000;
P.pc1=1.140600000000000;
P.Cs=0.010100000000000;
P.niu=9.520415341114659e-07;
P.fm=2;
P.phi_lm=0.503431090400000;
P.I11=0.2;
P.Zeeta=3.696152028525914e-04;
P.C1=0.839958085300000;
P.rM=4.241322704123775;
P.N=-0.006529965080390;
P.G1=1.363350182000000;
P.Rl=0.0002;
tspan=0:0.001:100;
% y0=0;
y0 = zeros(12,1);
opts = odeset('Mass',@(t,q) mass(t,q,P));
[t,q] = ode15s(@(t,q) fu(t,q,P),tspan,y0,opts);
figure
plot(t,q)
grid
legend(compose('y_%d', 1:12), 'Location','bestoutside')
function H = mass(t,y,P)
ph1_l1=P.ph1_l1;
ph1_l2=P.ph1_l2;
rm=P.rm;
rs=P.rs;
Cp=P.Cp;
ohm=P.ohm;
A1=P.A1;
p1=P.p1;
Ca=P.Ca;
rf=P.rf;
B=P.B;
Io=P.Io;
Ia=P.Ia;
Ib=P.Ib;
pc1=P.pc1;
Cs=P.Cs;
niu=P.niu;
fm=P.fm;
phi_lm=P.phi_lm;
I11=P.I11;
Zeeta=P.Zeeta;
C1=P.C1;
rM=P.rM;
N=P.N;
G1=P.G1;
Rl=P.Rl;
H = zeros(12,12);
H(1,1)=1;
H(2,2)=1;
H(2,8)=ph1_l1*rm;
H(2,10)=ph1_l2*rm;
H(3,3)=1;
H(4,4)=A1*rm/rs;
H(4,8)=rm/rs;
H(5,5)=1;
H(6,6)=A1*rm/rs;
H(6,10)=rm/rs;
H(7,7)=1;
H(8,8)=1;
H(9,9)=1;
H(10,10)=1;
H(11,11)=Cp*ohm;
H(12,12)=Cp*ohm;
end
function dydt = fu(t,y,P)
ph1_l1=P.ph1_l1;
ph1_l2=P.ph1_l2;
rm=P.rm;
rs=P.rs;
Cp=P.Cp;
ohm=P.ohm;
A=P.A1;
p1=P.p1;
Ca=P.Ca;
rf=P.rf;
B=P.B;
Io=P.Io;
Ia=P.Ia;
Ib=P.Ib;
pc1=P.pc1;
Cs=P.Cs;
niu=P.niu;
fm=P.fm;
phi_lm=P.phi_lm;
I11=P.I11;
Zeeta=P.Zeeta;
C1=P.C1;
rM=P.rM;
N=P.N;
G1=P.G1;
Rl=P.Rl;
dydt = [y(2)
-p1^4*y(1)-Ca*y(2)+ph1_l1*rm*rf^2*B*sin(rf*t)+ph1_l2*rm*rf.^2*B*sin(rf*t)+(rf.^2*B*sin(rf*t-rf*cos(rf*t))*Io)
y(4)
-A*y(3)*pc1^4-(Cs*pc1^4*A+Ca*A)*y(4)-Ca*y(8)*I11-y(11)*niu*(Ia-Ib)+fm*phi_lm+((rm/rs)*rf^2*B*sin(rf*t)-Ca*rf*B*cos(rf*t))*I11
y(6)
-A*y(5)*pc1^4-(Cs*pc1^4*A+Ca*A)*y(6)-Ca*y(10)*I11-y(12)*niu*(Ia-Ib)+fm*phi_lm+((rm/rs)*rf^2*B*sin(rf*t)-Ca*rf*B*cos(rf*t))*I11
y(8)
rf^2*ph1_l1*y(1)+Zeeta*ph1_l1*y(2)+2*C1*(rs/rM)*pc1^3*y(3)-rf^2*y(7)-Zeeta*y(8)+rf^2*B*sin(rf*t)
y(10)
rf^2*ph1_l2*y(1)+Zeeta*ph1_l2*y(2)+2*C1*(rs/rM)*pc1^3*y(5)-rf^2*y(9)-Zeeta*y(10)+rf^2*B*sin(rf*t)
-N*G1*y(4)-y(11)/Rl
-N*G1*y(6)-y(12)/Rl];
end
EDIT — (20 Nov 2023 at 14:20)
Changed integrator from ode45 to ode15s.
.
  2 comentarios
Imran
Imran el 20 de Nov. de 2023
Thank you sir, but as you mention here it's not working or not gives solution what can I do? Is ther any other method to solve multiple ODE
Star Strider
Star Strider el 20 de Nov. de 2023
As always, my pleasure!
I just now noticed that because of the large magnitude range of the parameters, the system is ‘stiff’. I edited my answer to change the integrator to ode15s, then re-ran the corrected code, and it works!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by