Why is this loop faster than a vectorised version? Could the vectorised version be made faster than the loop?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Michael
el 22 de Nov. de 2023
Comentada: Alexander
el 22 de Nov. de 2023
I'm trying to improve performance in a code that uses a loop. I've written a vectorised version matching the functionality, while avoiding costly transposes. However, I've found that the loop version invariably runs ~25% more quickly. Is there any way to further improve the performance of the vectorised version so that it surpasses the loop?
Of course, this is a tiny sub-function of a much larger, more complex program, but it is called tens of thousands of times in a single run, and is a bottleneck in the run time.
I do have the parallel computing toolbox, so could look into using parfor loops, but these don't always save time, and I was surprised that the vectorised version doesn't perform better!
% Input vectors
x1 = rand(1, 960);
x2 = rand(1, 960);
%% Looped version
tic;
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutLoop = zeros(length(x2), length(Y1));
for i=1:length(Y1)
p1 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1).*ones(1, length(x2));
p2 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1) - 0.35.*(4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*(x2 - 51);
p3 = p1.*(x1 >= Y2(i)) + p2 .* (x1 < Y2(i));
g1 = (x1 - Y2(i))./Y2(i);
g1 = abs(g1);
EiLoop = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).* 10.^(x2./10);
EoutLoop((1:length(x2)), i) = EiLoop(1:length(x2));
end
if (size(EoutLoop,1) > 1)
EoutLoop = sum(EoutLoop);
end
EoutLoop = 10 .* log(EoutLoop) ./ log(10);
% end timer
toc;
%% Vectorised version
% transpose input vector for vectorised version
x2 = x2.';
x1 = x1.';
% start timer
tic;
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutVec = zeros(length(x2), length(Y1));
p1 = 4.*Y2./24.673.*(0.004368.*Y2 + 1).*ones(length(x2), length(Y2));
p2 = 4.*Y2./24.673.*(0.004368.*Y2 + 1) - 0.35.*(4.*Y2./24.673.*(0.004368.*Y2 + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*repmat((x2 - 51), 1, length(Y2));
p3 = p1.*(x1 >= repmat(Y2, 1, size(x1, 2))) + p2 .* (x1 < repmat(Y2, 1, size(x1, 2)));
g1 = ((x1 - repmat(Y2, 1, size(x1, 2)))./repmat(Y2, 1, size(x1, 2)));
g1 = abs(g1);
EVec = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).*repmat(10.^(x2./10), 1, length(Y2));
EoutVec((1:length(x2)), :) = EVec(1:length(x2), :);
if (size(EoutVec,1) > 1)
EoutVec = sum(EoutVec);
end
EoutVec = 10.*log(EoutVec)./log(10);
% end timer
toc;
3 comentarios
Alexander
el 22 de Nov. de 2023
I agree. On my old Win7 machine (R2021b) the result is
Loop: Elapsed time is 0.316945 seconds.
Vectorised: Elapsed time is 0.062135 seconds.
Respuesta aceptada
Dyuman Joshi
el 22 de Nov. de 2023
Editada: Dyuman Joshi
el 22 de Nov. de 2023
Ideally, timeit should be used over tic-toc to get a more accurate idea of run times of the codes. tic-toc is generally used for portions of code.
"Use the timeit function for a rigorous measurement of function execution time. Use tic and toc to estimate time for smaller portions of code that are not complete functions." Reference - Measure the Performance of Your Code
While using tic-toc to measure the time of the code, you can either
> Run the same code multiple times via a for loop and average the data - "Sometimes programs run too fast for tic and toc to provide useful data. If your code is faster than 1/10 second, consider measuring it running in a loop, and then average to find the time for a single run." (Reference - https://in.mathworks.com/help/matlab/ref/tic.html#bswc7ww-3)
or
> Take a large(r) dataset.
I have chosen the latter option below -
% Input vectors
%% Large(r) dataset
x1 = rand(1, 100000);
x2 = rand(1, 100000);
%% Looped version
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutLoop = zeros(length(x2), length(Y1));
tic;
for i=1:length(Y1)
p1 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1).*ones(1, length(x2));
p2 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1) - 0.35.*(4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*(x2 - 51);
p3 = p1.*(x1 >= Y2(i)) + p2 .* (x1 < Y2(i));
g1 = (x1 - Y2(i))./Y2(i);
g1 = abs(g1);
EiLoop = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).* 10.^(x2./10);
EoutLoop((1:length(x2)), i) = EiLoop(1:length(x2));
end
if (size(EoutLoop,1) > 1)
EoutLoop = sum(EoutLoop);
end
EoutLoop = 10 .* log(EoutLoop) ./ log(10);
% end timer
toc;
%% Vectorised version
% transpose input vector for vectorised version
x2 = x2.';
x1 = x1.';
% start timer
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutVec = zeros(length(x2), length(Y1));
tic;
p1 = 4.*Y2./24.673.*(0.004368.*Y2 + 1).*ones(length(x2), length(Y2));
p2 = 4.*Y2./24.673.*(0.004368.*Y2 + 1) - 0.35.*(4.*Y2./24.673.*(0.004368.*Y2 + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*repmat((x2 - 51), 1, length(Y2));
p3 = p1.*(x1 >= repmat(Y2, 1, size(x1, 2))) + p2 .* (x1 < repmat(Y2, 1, size(x1, 2)));
g1 = ((x1 - repmat(Y2, 1, size(x1, 2)))./repmat(Y2, 1, size(x1, 2)));
g1 = abs(g1);
EVec = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).*repmat(10.^(x2./10), 1, length(Y2));
EoutVec((1:length(x2)), :) = EVec(1:length(x2), :);
if (size(EoutVec,1) > 1)
EoutVec = sum(EoutVec);
end
EoutVec = 10.*log(EoutVec)./log(10);
% end timer
toc;
You can see that the time taken by the vectorized approach is less than half of the time taken by the for loop approach.
4 comentarios
Dyuman Joshi
el 22 de Nov. de 2023
You are welcome!
It's good to know that you are utilizing the Profiler, it is an extremely helpful tool!
Más respuestas (0)
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!