Solving a quadratic optimization problem subjected to linear constraints

1 visualización (últimos 30 días)
I'm trying to recreate the code behind this picture. I have a function
where . I need to solve the following quadratic optimization problem subject to linear constraint:
subject to:
the input data are: = [0, 0.25, 0.5, 1, 1.2, 1.8, 2]; = [2, 0.8, 0.5, 0.1, 1, 0.5, 1];
And I need the following result:
I tried to use the function fmincon but it gives me always the same value for lambda. Can you help me find the error or explain to me what kind of function I need to use instead?
clc;
clear;
close all;
x_i = [0, 0.25, 0.5, 1, 1.2, 1.8, 2];
f_i = [2, 0.8, 0.5, 0.1, 1, 0.5, 1];
ottimizzazione_quadratica(x_i,f_i);
function risultato = ottimizzazione_quadratica(x_i, f_i)
x0 = zeros(size(x_i));
A = [];
b = [];
Aeq = [];
beq = [];
lb = zeros(size(x_i)); % lambda_i >= 0
ub = [];
lambda_ottimale = fmincon(@(lambda) funzione_obiettivo(lambda, x_i, f_i), x0, A, b, Aeq, beq, lb, ub);
risultato = F(lambda_ottimale, x_i);
% Plot F(x) and points (xi, fi)
x_vals = linspace(min(x_i), max(x_i), 1000);
F_vals = arrayfun(@(x) F(lambda_ottimale, x), x_vals);
figure;
plot(x_i, f_i, 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r'); % Punti dati
hold on;
plot(x_vals, F_vals, 'b-', 'LineWidth', 2); % Funzione F(x)
xlabel('x');
ylabel('F(x)');
grid on;
hold off;
end
function risultato = funzione_obiettivo(lambda, x_i, f_i)
risultato = norm(F(lambda, x_i) - f_i)^2;
end
% F(x)
function risultato = F(lambda, x_i)
risultato = sum(lambda .* phi(x_i));
end
% phi
function risultato = phi(x_i)
% max(0, 1 - norm(x - xi)^4)*(4*norm(x-xi)+1)
risultato = arrayfun(@(x) max(0, 1 - norm(x - x_i)^4)*(4*norm(x - x_i) + 1), x_i);
end

Respuesta aceptada

Matt J
Matt J el 28 de Nov. de 2023
Editada: Matt J el 28 de Nov. de 2023
You can use lsqnonneg,
xi=[0, 0.25, 0.5, 1, 1.2, 1.8, 2]';
fi= [2, 0.8, 0.5, 0.1, 1, 0.5, 1]';
phi=@(r) max(0, 1 - r).^4.*(4*r + 1);
C=phi(abs(xi-xi'));
[lambda,fval]=lsqnonneg(C,fi)
lambda = 7×1
1.8083 0 0 0 0.6845 0 0.8566
fval = 0.4904
  2 comentarios
arianna
arianna el 30 de Nov. de 2023
It's better than before, but I still don't get the same interpolation of the picture. Now I get this curve.
I don't understand what I'm missing.
Torsten
Torsten el 30 de Nov. de 2023
Your code uses a different function for phi than in your mathematical description.
In your code:
phi(r)=max(0, 1 - r.^4).*(4*r + 1)
In your mathematical description:
phi(r)=(max(0, 1 - r)).^4.*(4*r + 1)
@Matt J used your mathematical description.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Quadratic Programming and Cone Programming en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by