How to introduce 2nd order derivative term in pdepe?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hi,
Refer to the subject cited above, I'm not sure if it is possible or not to introduce second order derivative term in pdepe?
As shown in the image as above, I tried to introduce this 2nd derivative term by a new variable u4 in the code. Such that
u4 = DuDx(3), with source as DuDx(3) and zero flux. The ic and bc are also introduced in the code.
But, the code doesn't work as it gives "Spatial discretization error".
% solve 3-F bifurcaiton model
function pde2fshear_v4Perturbed_nonlinear
global chi0; % declare global variables
global D0;
global chi1;
global D1;
global alpha_chi;
global alpha_D;
global H0;
global S0;
global H;
global S;
global data;
global track;
global xstep;
global tstep;
global count;
global chi_growth;
global lambda_suppress;
global v_e;
global chi_ano;
global D_ano;
global sigma_turb;
global gamma_nonlin;
global alpha_nonlin;
global group_vel;
global drift_vel;
global intensity_diff;
global drift_velFluct;
global D_0;
global z;
%define values for constants
data.constant.critgradpressure = 1.2;
data.constant.critgraddensity = 1.0;
count = 1;
chi0 = 0.5;
D0 = 0.5;
chi1 = 5.0;
D1 = 5.0;
alpha_chi = 0.1;
alpha_D = 0.1;
H0 = 27;
S0 = 21;
track = 1;
chi_growth=20;
lambda_suppress=0.1 ;
chi_ano=10;
D_ano=10;
% For nonlinear model
gamma_nonlin = 1;
alpha_nonlin =1;
D_0 = 1;
group_vel=0;
%position and time grids information
xstep = 100;
tstep = 1000;
xmin = 0;
xmax = 1;
tmin = 0;
tmax = 50;
%tmax = 1;
m = 0; %define type of equation to solve
%Preallocate vectors for speed improvement
grad_u1 = zeros(tstep,xstep);
grad_u2 = zeros(tstep,xstep);
grad_u3 = zeros(tstep,xstep);
curve_u1 = zeros(tstep,xstep);
curve_u2 = zeros(tstep,xstep);
curve_u3 = zeros(tstep,xstep);
flowshear_p = zeros(tstep,xstep);
flowshear_n = zeros(tstep,xstep);
Q = zeros(tstep,xstep);
Q0 = zeros(tstep,xstep);
Q1 = zeros(tstep,xstep);
neo_p = zeros(tstep,xstep);
ano_p = zeros(tstep,xstep);
Gam = zeros(tstep,xstep);
Gam0 = zeros(tstep,xstep);
Gam1 = zeros(tstep,xstep);
neo_n = zeros(tstep,xstep);
ano_n = zeros(tstep,xstep);
%define first inner half of the plasma
%x = linspace(xmin,xmax/2,xstep/5);
x = linspace(xmin,xmax,xstep);
t = linspace(tmin,tmax,tstep);
%Add smaller grid size near plasma edge
%for i=(xstep/5)+1:xstep
% x(i) = x(i-1)+(xmax/2)/(xstep-(xstep/5));
%end
data.variable.x = x;
sol = pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t);
% Extract the first solution component as u1 = pressure
% second solution component as u2 = density
% third solution component as u3 = turbulence intensity
% fourth solution component as u4 = gradient of turbulence intensity
u1 = sol(:,:,1);
u2 = sol(:,:,2);
u3 = sol(:,:,3);
u4 = sol(:,:,4);
%grad_u = gradient(u,(x(2)-x(1)));
for j=1:tstep
for i = 1:xstep/5
if i == 1
grad_u1(j,i) = (u1(j,2)-u1(j,1))/(x(2)-x(1));
grad_u2(j,i) = (u2(j,2)-u2(j,1))/(x(2)-x(1));
grad_u3(j,i) = (u3(j,2)-u3(j,1))/(x(2)-x(1));
grad_u4(j,i) = (u4(j,2)-u4(j,1))/(x(2)-x(1));
elseif i == xstep/5
grad_u1(j,i) = (u1(j,i)-u1(j,i-1))/(x(i)-x(i-1));
grad_u2(j,i) = (u2(j,i)-u2(j,i-1))/(x(i)-x(i-1));
grad_u3(j,i) = (u3(j,i)-u3(j,i-1))/(x(i)-x(i-1));
grad_u4(j,i) = (u4(j,i)-u4(j,i-1))/(x(i)-x(i-1));
else
grad_u1(j,i) = (u1(j,i+1)-u1(j,i-1))/(x(i+1)-x(i-1));
grad_u2(j,i) = (u2(j,i+1)-u2(j,i-1))/(x(i+1)-x(i-1));
grad_u3(j,i) = (u3(j,i+1)-u3(j,i-1))/(x(i+1)-x(i-1));
grad_u4(j,i) = (u4(j,i+1)-u4(j,i-1))/(x(i+1)-x(i-1));
end
end
for i=(xstep/5)+1:xstep
if i == xstep/5+1
grad_u1(j,i) = (u1(j,i+1)-u1(j,i))/(x(i+1)-x(i));
grad_u2(j,i) = (u2(j,i+1)-u2(j,i))/(x(i+1)-x(i));
grad_u3(j,i) = (u3(j,i+1)-u3(j,i))/(x(i+1)-x(i));
grad_u4(j,i) = (u4(j,i+1)-u4(j,i))/(x(i+1)-x(i));
elseif i == xstep
grad_u1(j,i) = (u1(j,i)-u1(j,i-1))/(x(i)-x(i-1));
grad_u2(j,i) = (u2(j,i)-u2(j,i-1))/(x(i)-x(i-1));
grad_u3(j,i) = (u3(j,i)-u3(j,i-1))/(x(i)-x(i-1));
grad_u4(j,i) = (u4(j,i)-u4(j,i-1))/(x(i)-x(i-1));
else
grad_u1(j,i) = (u1(j,i+1)-u1(j,i-1))/(x(i+1)-x(i-1));
grad_u2(j,i) = (u2(j,i+1)-u2(j,i-1))/(x(i+1)-x(i-1));
grad_u3(j,i) = (u3(j,i+1)-u3(j,i-1))/(x(i+1)-x(i-1));
grad_u4(j,i) = (u4(j,i+1)-u4(j,i-1))/(x(i+1)-x(i-1));
end
end
end
for i=1:tstep
for j=1:xstep
v_e = -grad_u1(i,j)*grad_u2(i,j)/u2(i,j)^2; % -g_p*g_n/n^2
flowshear_p(i,j) = 1+ alpha_chi*v_e^2;
flowshear_n(i,j) = 1+ alpha_D*v_e^2;
if abs(grad_u1(i,j)) < abs(data.constant.critgradpressure) %&& abs(grad_u2(i,j)) < abs(data.constant.critgraddensity)
Q(i,j) = -grad_u1(i,j)*chi0;
Q0(i,j) = Q(i,j);
Q1(i,j) = 0;
neo_p(i,j) = chi0*(1+grad_u1(i,j))/(1+grad_u1(i,j));
ano_p(i,j) = 0;
Gam(i,j) = -grad_u2(i,j)*D0;
Gam0(i,j) = Gam(i,j);
Gam1(i,j) = 0;
neo_n(i,j) = D0*(1+grad_u2(i,j))/(1+grad_u2(i,j));
ano_n(i,j) = 0;
intensity_diff(i,j) = D_0*u3(i,j).^alpha_nonlin;
drift_velFluct(i,j)=D_0*alpha_nonlin*grad_u3(i,j).^(alpha_nonlin-1)*grad_u3(i,j);
drift_vel(i,j) = group_vel + drift_velFluct(i,j);
elseif abs(grad_u1(i,j)) >= abs(data.constant.critgradpressure) %&& abs(grad_u2(i,j)) < abs(data.constant.critgraddensity)
Q(i,j) = (chi0*(-grad_u1(i,j)) + chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j));
Q0(i,j) = -grad_u1(i,j)*chi0;
Q1(i,j) = (chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j));
neo_p(i,j) = chi0*(1+grad_u1(i,j))/(1+grad_u1(i,j));
ano_p(i,j) = chi_ano*(abs(grad_u1(i,j))+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j)*(-grad_u1(i,j));
Gam(i,j) = -grad_u2(i,j)*D0;
Gam0(i,j) = Gam(i,j);
Gam1(i,j) = 0;
neo_n(i,j) = D0*(1+grad_u2(i,j))/(1+grad_u2(i,j));
ano_n(i,j) = 0;
intensity_diff(i,j) = D_0*u3(i,j).^alpha_nonlin;
drift_velFluct(i,j)=D_0*alpha_nonlin*grad_u3(i,j).^(alpha_nonlin-1)*grad_u3(i,j);
drift_vel(i,j) = group_vel + drift_velFluct(i,j);
else
Q(i,j) = (chi0*(-grad_u1(i,j)) + chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j));
Q0(i,j) = -grad_u1(i,j)*chi0;
Q1(i,j) = (chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j));
neo_p(i,j) = chi0*(1+grad_u1(i,j))/(1+grad_u1(i,j));
ano_p(i,j) = chi_ano*(abs(grad_u1(i,j))+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j)*(-grad_u1(i,j));
Gam(i,j) = -grad_u2(i,j)*(D0 + D_ano*(-grad_u2(i,j)+data.constant.critgraddensity)*u3(i,j)/flowshear_n(i,j));
Gam0(i,j) = -grad_u2(i,j)*D0;
Gam1(i,j) = -grad_u2(i,j)*D_ano*(-grad_u2(i,j)+data.constant.critgraddensity)*u3(i,j)/flowshear_n(i,j);
neo_n(i,j) = D0*(1+grad_u2(i,j))/(1+grad_u2(i,j));
ano_n(i,j) = D_ano*(abs(grad_u2(i,j))+data.constant.critgraddensity)/flowshear_n(i,j);
intensity_diff(i,j) = D_0*u3(i,j).^alpha_nonlin;
drift_velFluct(i,j)=D_0*alpha_nonlin*grad_u3(i,j).^(alpha_nonlin-1)*grad_u3(i,j);
drift_vel(i,j) = group_vel + drift_velFluct(i,j);
end
end
end
%curve_u = gradient(grad_u,(x(2)-x(1)));
for j=1:tstep
for i = 1:xstep/5
if i == 1
curve_u1(j,i) = (grad_u1(j,2)-grad_u1(j,1))/(x(2)-x(1));
curve_u2(j,i) = (grad_u2(j,2)-grad_u2(j,1))/(x(2)-x(1));
curve_u3(j,i) = (grad_u3(j,2)-grad_u3(j,1))/(x(2)-x(1));
curve_u4(j,i) = (grad_u4(j,2)-grad_u4(j,1))/(x(2)-x(1));
elseif i == xstep/5
curve_u1(j,i) = (grad_u1(j,i)-grad_u1(j,i-1))/(x(i)-x(i-1));
curve_u2(j,i) = (grad_u2(j,i)-grad_u2(j,i-1))/(x(i)-x(i-1));
curve_u3(j,i) = (grad_u3(j,i)-grad_u3(j,i-1))/(x(i)-x(i-1));
curve_u4(j,i) = (grad_u4(j,i)-grad_u4(j,i-1))/(x(i)-x(i-1));
else
curve_u1(j,i) = (grad_u1(j,i+1)-grad_u1(j,i-1))/(x(i+1)-x(i-1));
curve_u2(j,i) = (grad_u2(j,i+1)-grad_u2(j,i-1))/(x(i+1)-x(i-1));
curve_u3(j,i) = (grad_u3(j,i+1)-grad_u3(j,i-1))/(x(i+1)-x(i-1));
curve_u4(j,i) = (grad_u4(j,i+1)-grad_u4(j,i-1))/(x(i+1)-x(i-1));
end
end
for i=(xstep/5)+1:xstep
if i == xstep/5+1
curve_u1(j,i) = (grad_u1(j,i+1)-grad_u1(j,i))/(x(i+1)-x(i));
curve_u2(j,i) = (grad_u2(j,i+1)-grad_u2(j,i))/(x(i+1)-x(i));
curve_u3(j,i) = (grad_u3(j,i+1)-grad_u3(j,i))/(x(i+1)-x(i));
curve_u4(j,i) = (grad_u4(j,i+1)-grad_u4(j,i))/(x(i+1)-x(i));
elseif i == xstep
curve_u1(j,i) = (grad_u1(j,i)-grad_u1(j,i-1))/(x(i)-x(i-1));
curve_u2(j,i) = (grad_u2(j,i)-grad_u2(j,i-1))/(x(i)-x(i-1));
curve_u3(j,i) = (grad_u3(j,i)-grad_u3(j,i-1))/(x(i)-x(i-1));
curve_u4(j,i) = (grad_u4(j,i)-grad_u4(j,i-1))/(x(i)-x(i-1));
else
curve_u1(j,i) = (grad_u1(j,i+1)-grad_u1(j,i-1))/(x(i+1)-x(i-1));
curve_u2(j,i) = (grad_u2(j,i+1)-grad_u2(j,i-1))/(x(i+1)-x(i-1));
curve_u3(j,i) = (grad_u3(j,i+1)-grad_u3(j,i-1))/(x(i+1)-x(i-1));
curve_u4(j,i) = (grad_u4(j,i+1)-grad_u4(j,i-1))/(x(i+1)-x(i-1));
end
end
end
%to save parameters and variables
data.constant.chi0 = chi0;
data.constant.D0 = D0;
data.constant.chi1 = chi1;
data.constant.D1 = D1;
data.constant.alphachi = alpha_chi;
data.constant.alphaD = alpha_D;
data.constant.H0 = H0;
data.constant.S0 = S0;
data.variable.pressure = u1;
data.variable.density = u2;
data.variable.turbulence= u3;
data.variable.intensity_diff=intensity_diff;
data.variable.drift_velFluct=drift_velFluct;
data.variable.drift_vel=drift_vel;
data.variable.gradpressure = grad_u1;
data.variable.graddensity = grad_u2;
data.variable.gradintensity = grad_u3;
data.variable.curvepressure = curve_u1;
data.variable.curvedensity = curve_u2;
data.variable.curveturbulence = curve_u3;
data.variable.x = x;
data.variable.t = t;
data.variable.Q = Q;
data.variable.Gamma = Gam;
data.variable.Q0 = Q0;
data.variable.Gamma0 = Gam0;
data.variable.neo_P = neo_p;
data.variable.neo_n = neo_n;
data.variable.Q1 = Q1;
data.variable.Gam1 = Gam1;
data.variable.ano_p = ano_p;
data.variable.ano_n = ano_n;
data.variable.heatsource = H;
data.variable.particlesource = S;
data.variable.wexb_p = flowshear_p;
data.variable.wexb_n = flowshear_n;
data.control.xgrid = xstep;
data.control.tgrid = tstep;
data.control.xmin = xmin;
data.control.xmax = xmax;
data.control.tmin = tmin;
data.control.tmax = tmax;
% --------------------------------------------------------------
function [c,f,s] = pdex2pde(x,t,u,DuDx)
global chi0;
global D0;
global chi1;
global D1;
global H0;
global S0;
global data;
global xstep;
global alpha_chi;
global alpha_D;
global chi_growth; % total growth rate
global length;
global theta_heaviside1;
global lambda_suppress;
global v_e;
global gamma_nonlin;
global alpha_nonlin;
global group_vel;
global drift_vel;
global intensity_diff;
global drift_velFluct;
global D_0;
global z;
%lf FFf F Fb vfDdength = 0.01 or 1
length=1;
c = [1;1;1;0];
v_e = -DuDx(1)*DuDx(2)/u(2)^2; % -g_p*g_n/n^2
flowshear_p = 1+ alpha_chi*v_e^2;
flowshear_n = 1+ alpha_D*v_e^2;
u(4)=DuDx(3);
term1 = abs(DuDx(1))-data.constant.critgradpressure;
drift_velFluct = D_0*DuDx(3)^alpha_nonlin;
% Implementing Heaviside function for H-mode in p, n and I equations
if term1 > 0
theta_heaviside1=1;
else
theta_heaviside1=0;
end
%Turbulence intensity Equation for nonlinear turbulence intensity
s3 = (chi_growth*(term1*theta_heaviside1-lambda_suppress*v_e^2)-gamma_nonlin*u(3)^alpha_nonlin)*u(3)-(group_vel*DuDx(3)+D_0*(1+alpha_nonlin)*(alpha_nonlin*u(3)^(alpha_nonlin-1)*(DuDx(3))^2+u(3)^alpha_nonlin*u(4))) ;
s = [(H0)*exp(-100*x^2/length)+H0/2; (S0)*exp(-100*(x-0.9)^2/length)+S0/2;s3;DuDx(3)];
f = [chi0+chi1*u(3)/flowshear_p ; D0+D1*u(3)/flowshear_n ;D_0*(1+alpha_nonlin)*u(3)^alpha_nonlin;0].*DuDx; % flux term for nonlinear model
% --------------------------------------------------------------
function u0 = pdex2ic(x)
%u0 = [eps; eps; eps;];
%u0 = [0.01; 0.01; 0.01; 0.01;0.1*exp(-100*(x-1)^2)];
u0 = [0.1*(1-x^2); 0.1*(1-x^2); 0.5*exp(-100*(x-1)^2);0.5*exp(-100*(x-1)^2)];
% --------------------------------------------------------------
function [pl,ql,pr,qr] = pdex2bc(xl,ul,xr,ur,t)
pl = [0; 0; 0; 0];
ql = [1; 1; 1; 1];
pr = [ur(1); ur(2); 0; ur(4)];
qr = [0.01; 0.1; 1; 1];
%---------------------------------------------------------------
It would help me if someone advice me.
with rgds,
rc
0 comentarios
Respuesta aceptada
Torsten
el 9 de En. de 2024
Editada: Torsten
el 9 de En. de 2024
If all the second-order spatial derivatives in your equation can be written in one expression as d/dx(f(x,t,I,dI/dx)*dI/dx) with a suitably chosen function f, "pdepe" is able to handle your equation. If not, "pdepe" is not able to handle your equation.
Even the term d^2/dx^2(D_I(I)*I) cannot be used without further manipulations within "pdepe" because it's not written in the necessary format.
9 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Sonar and Spatial Audio en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!