how to calculate tangent between circle and polynomial (from curve fit)
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi:
I have a known circle with x0,y0, and r, I also have a polynomial function from curve fitting result, is there any way to find the tangent line between those two? as well as the tangent point on each profile?
the curve fitting polynomia is attached, and the parameter of circle is:
x: 0.9439
y: 0.1063
r: 0.0537
Thank!
Yu
0 comentarios
Respuesta aceptada
Matt J
el 21 de En. de 2024
Editada: Matt J
el 21 de En. de 2024
The equation for the tangent to the polynomial is y=m(x1,y1)*x+b(x1,y1) where m(x1,y1) and b(x1,y1) are a function of the tangent point (x1,y1) and can easily be determined from calculus. Therefore, the tangent point on the circle must satisfy the two equations,
y2=m(x1,y1)*x2+b(x1,y1)
(x2-0.9439)^2+(y2-0.1063)^2=0.0537^2
Also, (x1,y1) must satisfy the polynomial equations
P(x1,y1)=0
And you have a 4th equation to express the fact that the normal vector to the tangent line is perpendicular to the tangent line,
(x2-0.9439)-m(x1,y1)*(y2-0.1063)=0
Four nonlinear equations in four unknowns. I expect there will be two solutions.
Más respuestas (0)
Ver también
Categorías
Más información sobre Polynomials en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!