skipping augmentedImageDatastore to train a net

13 visualizaciones (últimos 30 días)
omer wagner
omer wagner el 20 de Feb. de 2024
Comentada: Cris LaPierre el 21 de Feb. de 2024
Hi,
Following the example in "Train Deep Learning Network to Classify New Images",
How can I finetune my net without the augmentedImageDatastore step?
(I want to observe the performance when there arent any variations on the data)

Respuestas (1)

Cris LaPierre
Cris LaPierre el 20 de Feb. de 2024
You will need to remove it from your network. Look into removeLayer
  2 comentarios
omer wagner
omer wagner el 21 de Feb. de 2024
Could I use this on the same network (after performing the training on the Augmented), or that the layer is there in the final architecture?
no_aug_options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',6, ...
'InitialLearnRate',3e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',valFrequency, ...
'Verbose',false, ...
'Plots','training-progress');
no_aug_net = trainNetwork(imdsTrain,lgraph,no_aug_options);
Cris LaPierre
Cris LaPierre el 21 de Feb. de 2024
The output of removeLayer is a new network. You decide when and where to use this new network.
I believe you will need to retrain your network if you modify it.
Use analyzeNetwork to view the layers of your network.

Iniciar sesión para comentar.

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Productos


Versión

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by