Plateau followed by one phase decay

2 visualizaciones (últimos 30 días)
Francesco
Francesco el 26 de Feb. de 2024
Comentada: Francesco el 25 de Abr. de 2024
Good morning, I am trying to figure out how to compute tau constants from my data
My data could be be fitted by such plateau followed by one phase decay function:
I tried to implement it in MATLAB as follows:
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Plateau+(Y0-Plateau)*exp(-K*(x-X0));
figure;plot(x,y,'k');
However, I get the following result:
I would have 2 questions:
1) why cant I reproduce the one phase decay function?
2) would you know how to use the matlab funciton "fit" for such data with plateau followed by one phase decay function?
Thanks community for your kind support,
Best regards.

Respuestas (2)

Alan Stevens
Alan Stevens el 26 de Feb. de 2024
Like this?
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-K*(x-X0))).*(x>X0);
figure;plot(x,y,'k');
  5 comentarios
Alan Stevens
Alan Stevens el 26 de Feb. de 2024
Here's a quick fit of tau and Y0. I'll leave you to tidy it up and extend it to fit X0 as well.
x = 0:0.5:20;
y = [-0.137055262721364 -0.118841612584876 -0.274602636741299 -0.117324828772196 ...
-0.173528150754918 -0.280491919000118 -0.244300356226590 -0.367583069701879 ...
-0.423274105143034 -0.529129050767333 -0.774173830727337 -0.676677606159725 ...
-0.730062482232667 -0.863905715495076 -0.831675679632950 -0.987303352625066 ...
-0.949979744575626 -0.865710605996821 -0.901728879393798 -0.877082148456042 ...
-0.944693953430828 -1.07404346760035 -0.915521627715257 -0.901789963321291 ...
-0.955365771797851 -0.941530617721837 -0.945983148775748 -1.01735658137382 ...
-0.965635004813717 -1.06321643780048 -0.956807780654745 -1.09208906741553 ...
-1.04341265165344 -1.08982901817714 -1.07984413818039 -0.934740294823467 ...
-0.960591807908718 -1.03623550995537 -0.909687220130007 -1.09290177705358 ...
-1.01208835337351];
Plateau = -1;
X0 = 2;
fn = @(x,tau,Y0)Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-(x-X0)/tau)).*(x>X0);
tauY0 = [1, -0.1]; % Initial guess
tauY = fminsearch(@(tauY) F(tauY,x,y), tauY0);
tau = tauY(1); Y0 = tauY(2);
yfit = fn(x,tau,Y0);
plot(x,y,'.',x,yfit), grid
xlabel('x'), ylabel('y')
text(12,-0.25,['tau = ' num2str(tau)])
text(12,-0.35,['Y0 = ' num2str(Y0)])
function Z = F(tauY,x,y)
tau = tauY(1); Y0 = tauY(2);
Plateau = -1;
X0 = 2;
yvals = zeros(1,numel(x));
for i = 1:numel(x)
t = x(i) - X0;
yvals(i) = Y0*(t<=0)+(Plateau+(Y0-Plateau)*exp(-t/tau)).*(t>0);
end
Z = norm(yvals-y);
end
Francesco
Francesco el 25 de Abr. de 2024
Hello, I tried to implement the solution above, however I did not manage to have single function that provides all relevant parameters such as R squared, and Tau (or K).
For my analysis, Y0, X0 and Plateau are not relevant as main outputs.
Community help is greatly appreciated.

Iniciar sesión para comentar.


Francesco
Francesco el 27 de Feb. de 2024
Thanks Alan for your fantastic help, this is of great help, I guess for now this is resolved :) and I will figure out if there will be need for a function to automatically find X0. Best regards.

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by