Trouble with fmincon - minimizing a vector
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Jarl Bredal
el 28 de Feb. de 2024
Respondida: Torsten
el 28 de Feb. de 2024
Hi, I have a section of raw data and a template vector that I am doing a cosine similarity transform of. I want to maximize the similarity between the two so that I can find the best parameters for the template. I am trying to do this by using fmincon for (1-similarityvalues) to minimize the inverse.
The problem arise when i am trying to input (1-similiarityvalues) as the objective function in fmincon. (1-similiarityvalues) returns a vector of 181x1, but fmincon wants an objective function that returns a scalar value. Is what I'm trying to do even possible? Any tips or advice would be greatly appreciated. Thanks in advance!
A = [];
b = [];
x0 = [0.1, 0.1, 0.1, 0.1];
x = fmincon(@minimize1, x0, A, b);
function min1 = minimize1(x)
t = x(1);
alpha = x(2);
lambda = x(3);
mu = x(4);
template = alpha.*exp(lambda)/mu.*(lambda.*mu./(2.*pi.*t)).^(1/2).*exp(-lambda./2.*(t./mu+mu./t));
P005vals = readtable('P005.xlsx', 'Sheet','Sheet1');
timevals = str2double(P005vals.timevals(1:end));
bolus1_time = 13221.0;
bolus1_timeID = find(timevals==bolus1_time);
deltaT_values = str2double(P005vals.deltaTvals(1:end));
raw_data = -deltaT_values(bolus1_timeID-60:bolus1_timeID+120);
simvals1 = correlationfitting(raw_data, template');
min1 = 1- simvals1;
end
function sim_values = correlationfitting(raw_data, template_data)
sim_values = zeros(length(raw_data),1);% zeros(length(raw_data),1);
for i=1:(length(raw_data)-length(template_data))
raw_chunk = raw_data(i:i+length(template_data)-1);
sim_value = sum(raw_chunk.*template_data)/(norm(template_data)*(norm(raw_chunk)));
sim_values(i) = sim_value;
end
end
0 comentarios
Respuesta aceptada
Torsten
el 28 de Feb. de 2024
The appropriate objective is to minimize
-sum(similiarityvalues.^2)
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Nonlinear Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!