nonlinear-mpc fmincon error

13 visualizaciones (últimos 30 días)
Marshall Botta
Marshall Botta el 28 de Feb. de 2024
I am trying to make a bicycle vehicle model follow a reference trajectory that makes a vehicle go straight and slows down before reaching its final destination. I am getting an error from this Error Report from the mpc and can't seem to understand what its asking for since its an error under the mask of the nlmpc...
------------------------------------------------------
Start of Error Report
------------------------------------------------------
Error using sqpInterface
Nonlinear constraint function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 904)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in nlmpc/nlmpcmove (line 174)
[z, cost, ExitFlag, Out] = fmincon(CostFcn, z0, A, B, [], [], zLB, zUB, ConFcn, fminconOpt);
Error in nmpcblock_interface (line 163)
[mv, ~, Info] = nlmpcmove(nlobj, x, lastmv, ref, md, Options);
------------------------------------------------------
End of Error Report
------------------------------------------------------
Error:Error occurred when calling NLP solver "fmincon". See the error report displayed above.
Error in nmpcblock_interface.m (line 165)
throw(ME)
Error in 'noMatlabFunctionscen/MPC controller/Nonlinear MPC Controller/MPC/NLMPC' (line 24)
Here is my nlmpc settup code, nonlinear model code, and nonlinear jacobian model...
%% nlmpc settup code
clear all, close all, clc
Rho = 0.2;
Amax_accel = 4; %% Ego's max acceleration
Amax_brake = 5; %% Object's max brake
Amin_brake = 3; %% Object's min brake
Amin_brake_correct = 2; %% Ego's min brake
% During time [0,Rho] two cars will apply lateral acceleration towards each other then apply lateral deacceleration and the distance between both cars are at the minimal distance of u
Amax_lat_accel = 2; %% Maximum Lateral acceleration both cars are heading towards each other during [0,rho]... This is assuming the things coming by
Amin_lat_brake = 5; %% Minimum lateral brake acceleration both cars will do until they reach to 0 velocity or no collision...
VP = Rho*Amax_accel;
V1LatP= Rho*Amax_lat_accel;
%%MPC controller
nx = 10; % # of state variables
ny = 4; % # of output variables
nu = 2; % # of input variables [acceleration steeringangle]
nlobj = nlmpc(nx,ny,nu);
Zero weights are applied to one or more OVs because there are fewer MVs than OVs.
Ts = 0.01;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 3;
nlobj.MV(1).Min = Amin_brake_correct;
nlobj.MV(1).Max = Amax_accel;
nlobj.MV(2).Min = -1.0472; %% degrees:-60 (radians:-1.0472 )
nlobj.MV(2).Max = 1.0472; %% degrees:60 (radians:1.0472 )
nlobj.Model.StateFcn = @(x,u) NonlinModel(x,u);
nlobj.Jacobian.StateFcn = @(x,u) NonlinModelJacobian(x,u);
nlobj.Model.OutputFcn = @(x,u) [x(3);x(8);x(9);x(10)];
nlobj.Jacobian.OutputFcn = @(x,u) [0 0 1 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 1 0 0;...
0 0 0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 0 0 0 1];
nlobj.Weights.OutputVariables = [1 1 1 1];
nlobj.Weights.ManipulatedVariables = [0.3 0.1];
x0 = [-12.4781 7.3388 20 0 0 -0.0226 0 155.4781 0.0612 -0.0226]; %% [X Y Vx Vxdot Vy Yaw Yawdot e1 e2 e3] % e1=Xd-X e2=Yd-Y e2=Yawd-Yaw
u0 = [0 0];
ref0 = [0; 0; 0; 0].';
validateFcns(nlobj,x0,u0,{},{},ref0)
Error using validateFcns
Expected x to be an array with number of elements equal to 10.

Error in nlmpc/validateFcns (line 43)
validateattributes(x,{'double'},{'vector','real','finite','numel',nlobj.nx},FcnName,'x');
This is the new error...
%% nonlinear model code
function dxdt = NonlinModel(x,u)
%%[X Y Vx Vxdot Vy Yaw Yawdot e1 e2 e3]
m = 1600;
Iz = 3500;
lf = 3;
lr = 1.5;
Cf = 35000;
Cr = 30000;
T = 0.2;
Xd = 143;
Yd = 7;
Yawd = 0;
a1 = -(2*Cf+2*Cr)/m/x(3);
a2 = -(2*Cf*lf-2*Cr*lr)/m/x(3) - x(3);
a3 = -(2*Cf*lf-2*Cr*lr)/Iz/x(3);
a4 = -(2*Cf*lf^2+2*Cr*lr^2)/Iz/x(3);
b1 = 2*Cf/m;
b2 = 2*Cf*lf/Iz;
dxdt = x;
dxdt(1) = x(3); %% X
dxdt(2) = x(5); %% Y
dxdt(3) = x(7)*x(5)+x(4); %% Vx ?
dxdt(4) = (1/T)*(-x(4) + u(1)); %% Vxdot ?
dxdt(5) = a1*x(5) + a2*x(7) + b1*u(2); %% Vy
dxdt(6) = x(7); %% Yaw
dxdt(7) = a3*x(5) + a4*x(7) + b2*u(2); %% Yawdot
dxdt(8) = Xd-sin(x(6)); %% Error 1 X difference Vxd-cos(x(6))
dxdt(9) = Yd+cos(x(6)); %% Error 2 Y difference Vyd-sin(x(6))
dxdt(10) = Yawd-x(6); %% Error 3 Yaw difference Yawdotd - x(6)
end
%% nonlinear jacobian model
function [A,B] = NonlinModelJacobian(x,u)
%% [X Y Vx Vxdot Vy Yaw Yawdot e1 e2 e3]
m = 1600;
Iz = 3500;
lf = 3;
lr = 1.5;
Cf = 35000;
Cr = 30000;
T = 0.2;
Xd = 143;
Yd = 7;
Yawd = 0;
a1 = -(2*Cf+2*Cr)/m/x(3);
a2 = -(2*Cf*lf-2*Cr*lr)/m/x(3) - x(3);
a3 = -(2*Cf*lf-2*Cr*lr)/Iz/x(3);
a4 = -(2*Cf*lf^2+2*Cr*lr^2)/Iz/x(3);
b1 = 2*Cf/m;
b2 = 2*Cf*lf/Iz;
A = zeros(10,10);
A(1,3) = 1;
A(2,5) = 1;
A(3,4) = 1;
A(3,5) = x(7);
A(3,7) = x(5);
A(4,4) = -1/T;
A(5,3) = ((2*Cf+2*Cr)/m/(x(3)^2))*x(1) + (((2*Cf*lf-2*Cr*lr)/m/(x(3)^2))-1)*x(2);
A(5,5) = a1;
A(5,7) = a2;
A(7,3) = ((2*Cf*lf-2*Cr*lr)/Iz/(x(3)^2))*x(1) + ((2*Cf*lf^2+2*Cr*lr^2)/Iz/(x(3)^2))*x(2);
A(7,5) = a3;
A(7,7) = a4;
A(8,6) = -cos(x(6));
A(9,6) = -sin(x(6));
A(10,10) = -1;
B = zeros(10,2);
B(4,1) = 1/T;
B(5,2) = b1;
B(7,2) = b2;
end
Here is the simulink model...
  10 comentarios
Marshall Botta
Marshall Botta el 28 de Feb. de 2024
Editada: Marshall Botta el 28 de Feb. de 2024
Ok I didn't even know you could solve jacobians like that. This works and its validated completely with no errors! Also in my simulink model the error was still occurring and then I directly fed vx, vy, yaw and yawdot data into the mux block rather than using gotos and froms and no more errors! The simulation is running im so happy!
Thank you so much for your time!
Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis el 28 de Feb. de 2024
@Torsten looks like you have it covered :)

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Nonlinear MPC Design en Help Center y File Exchange.

Productos


Versión

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by