I want to know if my code is well written based on a set of criteria.
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
To estimate DIP_s, it is necessary to approximate the expected DIP concentration within the current time step used in the integration(i.e DIP_interm . If the time step is one day, this concentration (DIP_interm) is the sum of the present DIP and the result of Equation 1 with DIP_fert= 0. The difference between DIP_interm and DIP_O is an estimate of DIP_s.
dDIPdt = DIP_Fert + DIP_resp_phy - DIP_grow_phy - (0.1 * DIP) ...............................................................EQN(1)
DIP_req = DIP_grow_phy-(DIP_resp_phy + DIP_msc);
DIP_fert can then be calculated by applying the following rules:
if DIP_interm < DIP_O
DIP_Fert = DIP_req + (DIP_O - DIP_interm);
elseif 0 <= DIP_s <= DIP_req
DIP_Fert = DIP_req - DIP_s;
elseif DIP_s > DIP_req
DIP_Fert = 0;
end
Finally, Equation 1 is re-evaluated by inserting the value of DIP_fert obtained based on the above rules so as to obtain the rate change of DIP. The sum of DIP_fert calculated at each time step over the entire integration period is a rough estimate of the overall fertilizer N requirements for that period
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Define simulation period
startdate = datetime(2023, 01, 01, 'Format', 'uuuu-MM-dd');
finishdate = datetime(2023, 06, 30, 'Format', 'uuuu-MM-dd');
tspans = (1:1:days(finishdate - startdate) + 1);
%Dissolved inorganic phosphorous (DIP)
T_w = 20;
T_min = 18;
T_max = 27;
T_opt = 33;
if T_w < T_opt
Tau = exp(-4.6 * ((T_opt - T_w) / (T_opt - T_min)).^4);
else
Tau = exp(-4.6 * ((T_w - T_opt) / (T_max - T_opt)).^4);
end
V_n = 1;
GPP_lambda = 7.0; % assumed as & in g m^-3 d^-1
GPP = GPP_lambda * Tau * V_n;
DIP_IN = 0.2;
DIP_Fert = 0;
Redfield_ratio_p = 0.025;
DIP_grow_phy = GPP*Redfield_ratio_p;
DIP_resp_phy = 0.5 *DIP_grow_phy;
% Initialize DIP
DIP = zeros(length(tspans), 1); % Initialize DIP vector
% Initialize arrays to store DIP_Fert
DIP_Fert_values = zeros(length(tspans), 1);
for t = 1:length(tspans)-1
dDIPdt = @(t, DIP) calculate_dDIPdt(t, DIP, DIP_Fert, DIP_resp_phy, DIP_grow_phy);
[t_integrated, DIP_integrated] = ode45(@(t, DIP) dDIPdt(t, DIP), tspans(t:t+1), DIP_IN);
DIP(t+1) = DIP_integrated(end);
% Recalculate DIP_Fert based on conditions
DIP_O = 0.1;
DIP_msc = 0.1*DIP(t);
DIP_req = DIP_grow_phy-(DIP_resp_phy + DIP_msc);
DIP_interm = DIP(t) + (DIP_resp_phy + DIP_msc - DIP_grow_phy);
DIP_s =max(0,(DIP_interm - DIP_O));
if DIP_interm < DIP_O
DIP_Fert = DIP_req + (DIP_O - DIP_interm);
elseif all((0 <= DIP_s) & (DIP_s <= DIP_req))
DIP_Fert = DIP_req - DIP_s;
elseif DIP_s > DIP_req
DIP_Fert = 0;
end
% Check if DIP_Fert is negative and set it to zero
if DIP_Fert < 0
DIP_Fert = 0;
end
% Update DIP_Fert array
DIP_Fert_values(t+1) = DIP_Fert;
% Update initial condition for the next iteration
DIP_IN = DIP(t+1);
end
% Output DIP_Fert values at different time steps
disp('DIP_Fert values:');
disp(DIP_Fert_values);
% Plot DIP
plot(DIP);
xlabel('Time');
ylabel('Concentration');
legend('DIP',Location='northwest');
function dDIPdt = calculate_dDIPdt(~, DIP, DIP_Fert, DIP_resp_phy, DIP_grow_phy)
dDIPdt = DIP_Fert + DIP_resp_phy - DIP_grow_phy +- (0.1 * DIP);
end
2 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!